

SES Firmware Management Interface Specification

4U60 Storage Enclosure | G460-J-12

1ET0168 | November 2015 | Revision

1.1 Long Live Data ™ | www.hgst.cor

Copyright

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law: HGST a Western Digital company PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer or express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. HGST may make improvements or changes in any products or programs described in this publication at any time.

It is possible that this publication may contain reference to, or information about, HGST products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that HGST intends to announce such HGST products, programming, or services in your country.

Technical information about this product is available by contacting your local HGST representative or on the Internet at: support.hgst.com

HGST may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents.

© 2015 HGST, Inc. All rights reserved.

HGST, a Western Digital company 3403 Yerba Buena Road San Jose, CA 95135 Produced in the United States

Long Live $Data^{TM}$ is a trademark of HGST, Inc. and its affiliates in the United States and/or other countries.

HGST trademarks are authorized for use in countries and jurisdictions in which HGST has the right to use, market and advertise the brands.

Amazon S3, Amazon Simple Storage Services, and Amazon AWS S3 are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries.

Other product names are trademarks or registered trademarks of their respective owners.

One MB is equal to one million bytes, one GB is equal to one billion bytes, one TB equals 1,000GB (one trillion bytes) and one PB equals 1,000TB when referring to storage capacity. Usable capacity will vary from the raw capacity due to object storage methodologies and other factors.

References in this publication to HGST products, programs or services do not imply that HGST intends to make these available in all countries in which HGST operates.

Product information is provided for information purposes only and does not constitute a warranty.

Information is true as of the date of publication and is subject to change. Actual results may vary. This publication is for general guidance only. Photographs may show design models.

Contents

1 Introduction	9
1.2 Scope	10
1.3 Intended Audience	10
1.4 Terms and Abbreviations	10
2 SMP Interface	11
3.1 Supported SCSI Commands	12
3.1.1 Test Unit Ready	12
3.1.2 Inquiry	13
3.1.2.2 Supported VPD Pages VPD Page	15
3.1.2.3 Device Identification VPD Page	16
3.1.2.4 Extended Inquiry VPD Page	17
3.1.3 Receive Diagnostic Results	17
3.1.4 Send Diagnostic	17
3.1.5 Write Buffer	18
3.1.6 Read Buffer	18
3.1.7 LOG SELECT	19
3.1.7.2 Log Filter Control log page	21
3.1.8 LOG SENSE	24
3.1.9 MODE SELECT	25
3.1.9.2 Protocol Specific Port mode page	27
3.1.10 MODE SENSE	27
3.1.10.2 Protocol Specific Logical Unit mode page	29
3.1.11 Report LUN	
4.1 SES Overview	
4.1.1 RECEIVE DIAGNOSTIC RESULTS Command	34
4.1.2 SEND DIAGNOSTIC Command	34
4.2 Diagnostic Pages	35
Pages Contents	36
Pages Contents	
RELATIVE ENCLOSURE SERVICES PROCESS IDENTIFIER	
SUBENCLOSURE IDENTIFIER	
The NUMBER OF TYPE DESCRIPTOR HEADERS	
ENCLOSURE DESCRIPTOR LENGTH	
ENCLOSURE LOGICAL IDENTIFIER	
ENCLOSURE VENDOR IDENTIFIER	

PRODUCT IDENTIFICATION	39
PRODUCT REVISION LEVEL	39
VENDOR SPECIFIC ENCLOSURE INFORMATION	39
4.2.2.2 Type Descriptor	39
4.2.3 Enclosure Control Diagnostic Page (02h)	41
Description	41
Pages Contents	41
4.2.3.2 Control Element	42
4.2.4 Enclosure Status Diagnostic Page (02h)	43
Description	43
Pages Contents	43
4.2.4.2 Status Element	44
DISABLED	44
SWAP	44
ELEMENT STATUS CODE	44
4.2.5 String Out Diagnostic Page (04h)	45
Description	45
Pages Contents	45
Pages Contents	46
Pages Contents	47
4.2.7.2 Threshold Control Element	48
4.2.8 Threshold In Diagnostic Page (05h)	49
Description	49
Pages Contents	49
INVOP	49
4.2.8.2 Threshold Status Element	50
4.2.9 Element Descriptor Diagnostic Page (07h)	51
Description	51
Pages Contents	51
4.2.10 Additional Element Status Diagnostic Page (0Ah)	53
Description	53
Pages Contents	53
EIP	54
PROTOCOL IDENTIFIER	54
ADDITIONAL ELEMENT STATUS DESCRIPTOR LENGTH	54
EIIOE	54
ELEMENT INDEX	54
Protocol-specific information bytes	54

4.2.10	D.2 Protocol-specific Information	54
DES	SCRIPTOR TYPE	55
NO	T ALL PHYS	55
DE	VICE SLOT NUMBER	55
4.2.10	0.3 PHY Descriptor	55
4.2.11	Download Microcode Control Diagnostic Page (0Eh) ²	56
Des	scription	56
Pag	ges Contents	56
DO	WNLOAD MICROCODE MODE	57
BUI	FFER ID	57
BUI	FFER OFFSET	57
4.2.12	Download Microcode Status Diagnostic Page (0Eh) ³	57
Des	scription	57
Pag	ges Contents	57
SUE	BENCLOSURE DOWNLOAD MICROCODE STATUS	58
4.2.13	CLI Over SES Control Diagnostic Page (0x10h)	58
Des	scription	58
Pag	ges Contents	58
4.2.14	CLI Over SES Status Diagnostic Page (0x10h)	59
Des	scription	59
Pag	ges Contents	59
4.2.15	Timestamp Set Diagnostic Page (11h)	60
Des	scription	60
Pag	ges Contents	60
4.2.16	Timestamp Get Diagnostic Page (11h)	61
Des	scription	61
Pag	ges Contents	61
4.2.17	VPD Control Diagnostic Page (12h)	62
Des	scription	62
Pag	ges Contents	62
4.2.18	VPD Status Diagnostic Page (12h)	63
Des	scription	63
Pag	ges Contents	63
Pag	ges Contents	65
4.2.20	Log Status Diagnostic Page (13h)	67
Des	scription	67
Pag	ges Contents	67

	1 PHY Control Diagnostic Page (14h)	71
D	Description	71
Pa	Pages Contents	72
Pa	Pages Contents	73
4.2.	.22.3 Reserved Status Descriptor	76
4.2.23	8 Error Injection Control Diagnostic Page (15h)	76
D	Description	76
Pa	Pages Contents	85
4.2.26	5 State Preservation Status Diagnostic Page (16h)	87
D	Description	87
Pa	Pages Contents	87
4.3.1	COMMON CONTROL Element Format	90
4.3.2	COMMON STATUS Element format	91
4.3.	.3.2 Array Device Slot Status Element	93
4.3.4	Power Supply Element (02h)	94
4.3.4	.4.1 Power Supply Control Element	94
4.3.4	.4.2 Power Supply Status Element	94
4.3.	.5.1 Cooling Control Element	96
4.3.	.5.2 Cooling Status Element	97
4.3.	.6.1 Temperature Sensor Control Element	98
4.3.7	Enclosure Services Controller Electronics Element (07h)	100
4.3.7 4.3. ⁻		
	.7.1 ESCE Control Element	100
4.3.	.7.1 ESCE Control Element	100 101
4.3. 4.3. 4.3.8	.7.1 ESCE Control Element	100 101 102
4.3. 4.3. 4.3.8	 .7.1 ESCE Control Element .7.2 ESCE Status Element Enclosure Element (0Eh) .8.1 Enclosure Control Element 	100 101 102 102
4.3. ² 4.3. ² 4.3.8 4.3.8	 .7.1 ESCE Control Element .7.2 ESCE Status Element Enclosure Element (0Eh) .8.1 Enclosure Control Element 	100 101 102 102 102
4.3. 4.3. 4.3.8 4.3.8 4.3.8	 .7.1 ESCE Control Element	100 101 102 102 102 102 104
4.3.7 4.3.8 4.3.8 4.3.8 4.3.8 4.3.9	 .7.1 ESCE Control Element	100 101 102 102 102 104 104
4.3.7 4.3.8 4.3.8 4.3.8 4.3.8 4.3.9 4.3.9 4.3.9	 .7.1 ESCE Control Element	
4.3.7 4.3.8 4.3.8 4.3.8 4.3.8 4.3.9 4.3.9 4.3.9	 .7.1 ESCE Control Element	100 101 102 102 102 104 104 105 105
4.3.7 4.3.8 4.3.8 4.3.8 4.3.9 4.3.9 4.3.10 4.3.10 4.3.11	 .7.1 ESCE Control Element	100 101 102 102 102 104 104 105 105 107
4.3.7 4.3.8 4.3.8 4.3.8 4.3.9 4.3.9 4.3.10 4.3.10 4.3.11	 .7.1 ESCE Control Element	
4.3.7 4.3.8 4.3.8 4.3.9 4.3.9 4.3.10 4.3.10 4.3.11 4.3.11 4.3.12	 .7.1 ESCE Control Element	
4.3.7 4.3.8 4.3.8 4.3.9 4.3.9 4.3.9 4.3.10 4.3.10 4.3.11 4.3.11 4.3.12 4.3.12 4.3.12	 .7.1 ESCE Control Element	
4.3.7 4.3.8 4.3.8 4.3.9 4.3.9 4.3.9 4.3.10 4.3.10 4.3.11 4.3.11 4.3.12 4.3.12 4.3.12	 7.1 ESCE Control Element	100 101 102 102 102 102 102 104 104 105 107 107 108 108 108
4.3.7 4.3.8 4.3.8 4.3.9 4.3.9 4.3.9 4.3.10 4.3.10 4.3.11 4.3.11 4.3.12 4.3.12 4.3.12 4.3.12	 7.1 ESCE Control Element	

4.9	Command Definitions	
4.9.2	1 help	
	Description	
	Syntax	
4.9.2	2 about	
	Description	
	Syntax	
4.9.3	3 drv	
	Descriptor	
	Syntax	
4.9.4	4 esm	
	Descriptor	
	Syntax	
4.9.5	5 fan	
	Description	
	Syntax	
4.9.6	6 fru	
	Description	
	Syntax	
4.9.7	7 log	
	Description	
	Syntax	
4.9.8	8 port	
	Description	
	Syntax	
4.9.9	9 power	
	Descriptor	
	Syntax	
4.9.2	10 reset	
	Description	
	Syntax	
4.9.2	11 temp	
	Descriptor	
	Syntax	
4.9.2	12 threshold	115
	Descriptor	
	Syntax	
4.9.2	13 checklist	

	Des	cription	116
	Synt	tax	116
4.9.	14	mode	116
	Des	cription	116
	Synt	tax	116
4.9.	15	config	117
	Des	cription	117
	Synt	tax	117
4.9.	16	debug	117
	Des	cription	117
	Synt	tax	117
4.9.	17	errlog	117
	Des	cription	117
	Synt	tax	118
4.9.	18	led	118
	Des	cription	
			118
	Synt	tax	
4.9.	•	•	118
4.9.	.19	tax	118
4.9.	.19 Des	tax spin	118 119 119
4.9. 4.9.	.19 Des Synt	tax spin cription	118 119 119 119
	.19 Des Synt 20	tax spin cription	118 119 119 119 119 119
	19 Des Synt 20 Des	tax spin cription tax vpd	118 119 119 119 119 119 119
4.9.	19 Des Synt 20 Des Synt	tax spin cription tax vpd cription	118 119 119 119 119 119 119 119
4.9.	19 Desc Synt 20 Desc Synt 21	tax spin cription tax vpd cription tax.	118 119 119 119 119 119 119 120

Revision History

Date	Revision	Comment
October 2015	Revision 1.0	Initial Version
November 2015	Revision 1.1	Updates to content

1 Introduction

1.1 Purpose

This document describes the management interface of the CLS SES firmware.

The purpose of this document is to provide the detailed descriptions about SMP/SCSI/SES and CLI interfaces. It also serves as the integration guide that outlines how to communicate with Enclosure at host side via SMP/SCSI/SES and how to interact with the Enclosure using the CLI.

1.2 Scope

This document covers the detailed input/output information for the following items:

- SMP commands for SAS Expander Management
- SCSI commands to access SAS Expander
- SCSI Enclosure Service pages and elements for in-band Enclosure Management
- Command Line Interface commands for out-of-band Enclosure Management

1.3 Intended Audience

The intended audience of this document is:

- System architects
- Firmware engineers
- Validation test engineers
- Customer experience test engineers
- System application engineers

1.4 Terms and Abbreviations

CLI – Command Line Interface

EMM – Enclosure Management Module

- EMIP PMC Embedded 32-bit Micro Processor
- FRU Field Replaceable Unit
- HDD Hard Disk Drive
- PS Power Supply

SAS – Serial Attached SCSI

SATA – Serial Advanced Technology Attachment

SCSI - Small Computer System Interface

SES – SCSI Enclosure Service

SMP – Serial Management Protocol

VPD – Vital Product Data

2 SMP Interface

CLS SES firmware fully supports and services all the required SMP commands for expanders as defined in the T10 SPL-3 specification, Revision 07 $\,$

Supported SMP Commands

Operation	Command Name	Mandatory	
Code		SES-3	CLS SES
00h	REPORT GENERAL	YES	YES
01h	Report Manufacturer Information	YES	YES
02h	Read GPIO Register	No	YES
03h	Report Self- Configuration	YES	YES
04h	Report Zone Permission Table	YES	YES
05h	Report Zone Manager Password	YES	YES
06h	Report Broadcast	YES	YES
10h	Discover	YES YES	
11h	Report PHY Error Log	YES YES	
12h	REPORT PHY SATA	YES YES	
13h	13h Report Route YES Information		YES
14h			YES
20h	Discover List	YES	YES
21h	Report PHY Event List	YES	YES
22h	Report Expander Route Table List	YES	YES

3 SCSI Interface

The client addresses SCSI Commands to the expander's SSP port. The client sends commands to the logical unit number (LUN) implementing the PERIPHERAL DEVICE TYPE of 0Dh (obtained from the INQUIRY command) to indicate this is a SES device. This LUN is always zero.

3.1 Supported SCSI Commands

The SCSI commands defined for CLS SES firmware are listed in the following table.

Operation Code	Command Name	Mar	ndatory	Reference	
		SES-3	CLS SES		
00h	TEST UNIT READY	YES	YES	Test Unit Ready	
12h	INQUIRY	YES	YES	<u>Inquiry</u>	
1Ch	RECEIVE DIAGNOSTIC RESULTS	YES	YES	<u>Receive Diagnostic</u> <u>Results</u>	
1Dh	SEND DIAGNOSTIC	YES	YES	Send Diagnostic	
3Bh	WRITE BUFFER	NO	YES	Write Buffer	
3Ch	READ BUFFER	NO	YES	Read Buffer	
4Ch	LOG SELECT	NO	YES	LOG SELECT	
4Dh	LOG SENSE	NO	YES	LOG SENSE	
55h	MODE SELECT(10)	NO	YES	MODE SELECT	
5Ah	MODE SENSE(10)	NO	YES	MODE SENSE	
A0h	REPORT LUNS	YES	YES	Report LUN	

Table 2 Supported SCSI Commands

If a client sends a CDB with an OPERATION CODE that is not supported, the CLS SES firmware returns a CHECK CONDITION with a sense key of ILLEGAL REQUEST and an ASC/ASCQ of INVALID COMMAND OPERATION CODE. If the OPERATION CODE is valid but another field is not, the CLS SES firmware returns an ASC/ASCQ of INVALID FIELD IN CDB.

If a client sends a command with an invalid field in the parameter data, the CLS SES firmware usually terminates the command with a CHECK CONDITION, a sense key of ILLEGAL REQUEST and an ASC/ASCQ of INVALID FIELD IN PARAMETER LIST.

3.1.1 Test Unit Ready

The TEST UNIT READY command provides a method to check if the CLS SES firmware is ready.

Table 3 TEST UNIT READY command

TEST UNIT READY command								
Bit Byte	7	6	5	4	3	2	1	0
0	OPERATION CODE (00h)							
1	Reserved							
4								
5				CONTRO	0L(00h)			

CONTROL Always zero.

If the CLS SES firmware is ready to accept commands, it returns GOOD status. Otherwise, it returns a CHECK CONDITION with a sense key of NOT READY and an ASC/ASCQ of ENCLOSURE SERVICES UNAVAILABLE. This condition indicates that the CLS SES firmware is starting up.

3.1.2 Inquiry

The INQUIRY command requests information about the enclosure. The INQUIRY data is returned even if the CLS SES firmware is not ready for other commands, and even if all the information is not yet available (e.g., because it has to be read from devices' no-volatile memory that have not yet started up). If information is not yet available, affected ASCII fields will be set to all spaces (20h) and other affected fields will be set to zero. Fields with values shown as literal constant are always available.

Table 4 INQUIRY command

INQUIRY command									
Bit Byte	7	6	5	4	3	2	1	0	
0		OPERATION CODE (12h)							
1		Reserved Obsolete EVPD							
2		PAGE CODE							
3	(MSB)	(MSB) ALLOCATION LENGTH							
4		ALLOCATION LENGTH (LSB)							
5				CONTRO	L(00h)				

EVPD and **PAGE CODE** If EVPD and PAGE CODE are zero, the CLS SES firmware returns Standard INQUIRY Data (<u>Standard INQUIRY Data</u>). If EVPD is one and PAGE CODE is zero, then the CLS SES firmware returns the Supported VPD Pages (<u>Supported VPD Pages VPD Page</u>). If EVPD is one and PAGE CODE is the code of a supported VPD page, then returns that VPD page. For any other values of these fields, it returns a CHECK CONDITION with a sense key of ILLEGAL REQUEST and an ASC/ASCQ of INVALID FIELD IN CDB.

ALLOCATION LENGTH The number of bytes requested by the client. It should be at least as long as the length of the requested page, as covered below. If shorter, the page is truncated at this length.

CONTROL Always zero.

3.1.2.1 Standard INQUIRY Data

Table 5 Standard INQUIRY data format

			Standard	INQUIRY da	ta format							
Bit Byte	7	6	5	4	3	2	1	0				
0	PEF	RIPHERAL QUAL	IFIER		PERIF	PHERAL DEVICE	TYPE					
1	RMB	LU_CONG			Rese	rved						
2				VER	SION							
3	Reserved	Reserved	NORMACA	HISUP		RESPONSE DAT	A FORMAT(2h))				
4				ADDITIONAL	LENGTH (n-4)							
5	SCCS	ACC	TPO	GS	3PC	Rese	erved	PROTECT				
6	Obsolete	ENCSERV	VS	MULTIP	Obsolete	Reserved	Reserved	ADDR16				
7	Obsolete	Reserved	WBUS16	SUNC	Obsolete	Reserved	CMDQUE	VS				
8	(MSB)											
	_		1	F10 VENDOR II	DENTIFICATION			(LSE				
15	_							(-				
16	(MSB)											
	_			PRODUCT IDE	NTIFICATION			(LSE				
31	_											
32	(MSB)											
	_			PRODUCT RE	VISION LEVEL			(LSE				
35								,				
36				Vendor	specific							
	_											
55												
56		Res	erved		CLOC	KING	QAS	IUS				
57				Rese	erved							
58	(MSB)											
59	-			VERSION DE	SCRIPTOR 1			(LSE				
4								(
72	(MSB)											
73	-			VERSION DE	SCRIPTOR 8			(LSI				
74				Rese	erved			(10)				
	-											
95	—											

PERIPHERAL QUALIFIER If the INQUIRY command was directed to LUN 0, the value is zero to indicate that this is a supported logical unit. If any other LUN is specified, the value is 3 to indicate that the LUN is not supported.

PERIPERAL DEVICE TYPE For LUN 0, always 0Dh, to indicate this is a SES device.

VERSION Always 06h to indicate compliance with SPC-4.

RESPONSE DATA FORMAT Always 2, which indicates that the data is in the format specified in

SPC-4

ENCSERV Always one, which indicates that the device contains an embedded enclosure services component.

MULTIP Always zero, which indicates that the logical unit is in a SCSI target device with a single SCSI target port.

CMDQUE Always one, which indicates that the logical unit supports the command management model defined in SAM-5.

T10 VENDOR IDENTIFICATION An 8-byte left-aligned ASCII string containing the vendor identification assigned by INCITS.

PRODUCT IDENTIFICATION A 16-byte left-aligned ASCII string, identifying the fact that this is an enclosure implementing CLS SES firmware.

RODUCT REVISION LEVEL A 4-bytes left-aligned ASCII data that identifies the product revision and is defined by the manufacturer.

The remaining fields in the INQUIRY data are always kept zero.

3.1.2.2 Supported VPD Pages VPD Page

Table 6 Supported VPD Pages VPD page

			Support	ed VPD Pages V	PD page			
Bit Byte	7	6	5	4	3	2	1	0
0	PER	IPHERAL QUALI	FIER		PERIP	HERAL DEVIC	E TYPE	I
1				PAGE COD	E (00h)			
2	(MSB)				TU (n 2)			
3				PAGE LENG	ITT (II-3)			(LSB)
4				Supported VP	D page list			
n								

Supported VPD Pages shown as below:

• Supported VPD Pages VPD page

- Device Identification VPD Page Extended Inquiry VPD Page •
- •

3.1.2.3 Device Identification VPD Page

Table 7 Device Identification VPD page

			Device I	dentification V	PD page									
Bit Byte	7	6	5	4	3	2	1	0						
0	PER	IPHERAL QUAL	FIER		PERIPHERAL DEVICE TYPE									
1				PAGE COL	DE (83h)									
2	(MSB)													
3				PAGE LENG	GTH (n-3)			(LS						
		De	signation Des	criptor - Targe	t Port Identif	ier								
4		PROTOCOL Q	UALIFIER (6h)			CODE S	ET (1h)							
5	PIV (1b)	Reserved	ASSOCIA	TION(01b)	DN(01b) DESIGNATOR TYPE (3h)									
6				Reser	ved									
7				DESIGNATOR	LENGTH (8)									
8				SAS ADI	DRESS									
	-													
15	-													
		Designa	tion Descripto	or - Addressed L	ogical Unit I	dentifier								
16		PROTOCOL Q	UALIFIER (0h)			CODE S	ET (1h)							
17	PIV (0b)	Reserved	ASSOCIA	TION(10b)		DESIGNATO	R TYPE (3h)							
18				Reser	ved									
19				DESIGNATOR	LENGTH (8)									
20				SAS ADI	DRESS									
20	-			SAS ADI	DRESS									
-				SAS ADI	DRESS									
		Design	ation Descript	SAS ADI tor - Relative Ta		entifier								
		-	ation Descript UALIFIER (6h)			entifier CODE S	ET (1h)							
 27	PIV (1b)	-	UALIFIER (6h)											
 27 28	PIV (1b)	PROTOCOL Q	UALIFIER (6h)	tor - Relative Ta	arget Port Ide	CODE S								
 27 28 29	PIV (1b)	PROTOCOL Q	UALIFIER (6h)	tor - Relative Ta TION(01b)	arget Port Ide	CODE S								
 27 28 29 30	PIV (1b)	PROTOCOL Q	UALIFIER (6h)	tor - Relative Ta TION(01b) Reser	ved LENGTH (4)	CODE S								
 27 28 29 30 31	PIV (1b)	PROTOCOL Q	UALIFIER (6h)	tor - Relative Ta TION(01b) Reser DESIGNATOR	ved LENGTH (4)	CODE S								
 27 28 29 30 31 32	PIV (1b)	PROTOCOL Q	UALIFIER (6h)	tor - Relative Ta TION(01b) Reser DESIGNATOR	ved LENGTH (4) ete	CODE S								

Supported Designation Descriptors shown as below: • Target Port Identifier

- Addressed Logical Unit Identifier
- Relative Target Port Identifier The relative port identifier of the target port on which the INQUIRY command was receive.

3.1.2.4 Extended Inquiry VPD Page

Table 8 Extend INQUIRY Data VPD page

			Extended 1	INQUIRY Data	VPD page					
Bit Byte	7	6	5	4	3	2	1	0		
0	PER	IPHERAL QUAL	IFIER	PERIPHERAL DEVICE TYPE						
1				PAGE CODE (86h)						
2 3	(MSB)			PAGE LENC	GTH (3Ch)			(LSB		
4	ACTIVATE N	MICROCODE		SPT		GRD_CHK	APP_CHK	REF_CHK		
5	Rese	erved	UASK_SUP	GROUP_SUP	PRIOR_SUP	HEADSUP	ORDSUP	SIMPSUP		
6		Res	served		WU_SUP	CRD_SUP	NV_SUP	V_SUP		
7		Reserved		P_I_I_SUP		Reserved		LUICLR		
8		Reserved		R_SUP	Reserved			CBCS		
9		Res	served	MULTI I_T NEXUS MICROCODE DOWNLOAD						
10 11	(MSB)		EXTEND	DED SELF-TEST COMPLETION MINUTES						
12	POA_SUP	HRA_SUP	VSA_SUP			Reserved				
13		1	MAXIMU	JM SUPPORTED	SENSE DATA LE	INGTH				
14				Rese	rved					
63										

Detail definitions of each field refer to SCSI Primary Commands – 4 (SPC-4)

3.1.3 Receive Diagnostic Results

The RECEIVE DIAGNOSTIC RESULTS command is used by the client to receive enclosure status from the CLS SES firmware in the IO control module. RECEIVE DIAGNOSTIC RESULTS command format shown in <u>RECEIVE DIAGNOSTIC RESULTS Command</u>. And refer to <u>Diagnostic Pages</u> for supported "status" Diagnostic Pages.

3.1.4 Send Diagnostic

The SEND DIAGNOSTIC command is used by the initiator to send SES control commands to the CLS SES firmware in the IO control module. SEND DIAGNOSTIC command format shown in <u>SEND</u> <u>DIAGNOSTIC Command</u>. And refer to <u>Diagnostic Pages</u> for supported "control" Diagnostic Pages.

3.1.5 Write Buffer

The WRITE BUFFER allows the client to write to a memory such as an EEPROM in the enclosure.

			WRI	TE BUFFER com	mand			
Bit Byte	7	6	5	4	3	2	1	0
0				OPERATION	CODE (3Bh)		•	
1		MODE SPECIFIC				MODE		
2				BUFFE	R ID			
3 4	(MSB)			BUFFER	OFFSET			(LSB)
5								
6 7 8	(MSB)			PARAMETER L	IST LENGTH			(LSB)
9				CONTRO	DL(00h)			

Table 9 WRITE BUFFER command

MODE

- *E* Following MODE is supported by CLS SES firmware for WRITE BUFFER command
 - 01h Vendor specific
 - 07h Download microcode with offsets, save, and activate
 - 0Eh Download microcode with offset, save and defer activate
 - 0Fh Activate deferred microcode

Any WRITE BUFFER commands received with a mode rather than MODE listed above will return CHECK CONDITION, with the sense key set to ILLEGAL REQUEST, and ASC/ASCQ set to INVALID FIELD IN CDB.

The Vendor Specific mode (01h) is analogous to the Vendor Specific mode of the READ BUFFER command, The Vendor Specific mode is really Data Mode, and the Buffer ID field is used to extend the Buffer Offset field to 4 bytes. Warnings regarding use of the Vendor Specific mode of the READ BUFFER command apply equally, at least, to the WRITE BUFFER command.

Unlike Vendor Specific mode, the Download Microcode modes (07h, 0Eh and 0Fh) of the WRITE BUFFER command are fully intended for use in a product. The Download Microcode modes of the WRITE BUFFER command are treated as SES "Download Microcode Control diagnostic page"

3.1.6 Read Buffer

The READ BUFFER command allows the client to read a buffer in RAM, EEPROM or flash memory in the enclosure.

			READ	BUFFER comr	nand			
Bit Bvte	7	6	5	4	3	2	1	0
0		1	1	OPERATION	CODE (3Ch)	1	1	1

Table 10 READ BUFFER command

1	Reserved	MODE
2		BUFFER ID
3	(MSB)	BUFFER OFFSET
4		(LSB)
5		
6	(MSB)	ALLOCATION LENGTH
7		(LSB)
8		
9		CONTROL(00h)

MODE The function of this command and the meaning of fields within the CDB depend on the contents of the MODE field. Only mode = 01h (Vendor specific) is supported by CLS SES firmware. Any READ BUFFER commands received with a mode rather than 01h will return CHECK CONDITION, with the sense key set to ILLEGAL REQUEST, and ASC/ASCQ set to INVALID FIELD IN CDB.

BUFFER ID and **BUFFER OFFSET** The format of the CDB is identical to the SPC- 4 READ BUFFER command Data mode except that the Buffer ID field, byte 2, is used to extend the Buffer Offset, bytes 3 to 5, to make a 4 byte offset field. This allows the initiator to specify any address in the virtual memory space.

CLS SES firmware does not validate the address before attempting the read, so an invalid address may result in a memory fault.

ALLOCATION LENGTH The number of bytes that the client has allocated in the Data-In Buffer

The READ BUFFER command is intended for debugging during development, and careful consideration should be given to using it to provide product functionality.

3.1.7 LOG SELECT

			LO	G SELECT Com	mand			
Bit Byte	7	6	5	4	3	2	1	0
0				OPERATION	I CODE (4Ch)			
1			Res	served			PCR	SP
2	Р	С			PAGE	CODE		
3				SUBPAG	ge code			
4				Res	erved			
5								
6								
7	(MSB)			DADAMETED	LIST LENGTH			
8				I ANAMETER				(LSB)

Table 11 LOG SELECT command

9	CONTROL

The following log subpages are supported for the LOG SELECT command

- Main Firmware Log Retrieve Last n Entries
- Main Firmware Log Filter Control
- EMIP Firmware Log Retrieve Last n Entries
- EMIP Firmware Log Filter Control

Detail definitions of each field refer to SCSI Primary Commands - 4 (SPC-4)

3.1.7.1 Log Retrieve Last n Entries log page

			Lo	g Retrieval For	nat			
Bit Byte	7	6	5	4	3	2	1	0
0	DS	SPF(1b)			PAGE CO	DE(30h)		
1				SUBPAGE COD	E (01h or 03h)			
2	(MSB)				CTU(n, 2)			
3				PAGE LEN	GIN(II-3)			(LSB)
4				Log Retrieve	e Parameter			
n								

Table 12 Log Retrieve Format

Log Retrieve is used to get the data entries that firmware supplied. It is useful to get the data to analyze current system status or to debug the system. LOG SELECT sets the last n entries to tell the CLS SES firmware the number of entries reported and the LOG SENSE coordinate with LOG SELECT to report the real entry numbers to the host.

Table 13 Log Retrieve Parameter Format

			Log Retr	ieve Paramete	r Format			
Bit Byte	7	6	5	4	3	2	1	0
0	(MSB)	I	L	PARAMET	er code		L	(LSB)
2	DU	Obsolete	TSD	ETC	TN	1C	FORMAT A	ND LINKING
3		•	L	PARAMETER	LENGTH(n-3)			
4	-			EMM EVI	ent log			
n								

FORMAT AND LINKING Only binary format is used and PC bit in LOG SELECT CDB will be omitted.

TMC, ETC, TSD, DU These bits are not implemented and just fill zero.

Table 14 EMM Event Log Format for Main Firmware Log Retrieve

	7	6	5	4	3	2	1	0
Bit			-		_			
Byte								
0	(MSB)							
1				LAST N LOO	G ENTRIES			
1								(LS
2				Rese	rved			

LAST N LOG ENTRIES The field reflects how many log entries are requested. If last n entries is larger than max entries or 0, last n entries will be modified to max entries.

Table 15 EMM Event Log Format for EMIP Firmware Log Retrieve

	7	6	5	4	3	2	1	0
Bit								
Byte								
0	(MSB)							
		LAST N LOG ENTRIES						
1		(LSB)						
2		Logical PHY ID						
		-						

LAST N LOG ENTRIES The field reflects how many log entries are requested. If last n entries is larger than max entries or 0, last n entries will be modified to max entries.

Logical PHY ID The field specifies the logical PHY ID to retrieve the EMIP firmware log on this PHY. The valid range of logical PHY ID is zero to (logical PHY count- 1). Each EMIP log select command can only retrieve the EMIP log for a single PHY at a time.

3.1.7.2 Log Filter Control log page

Table 16 Log Filter Format

	Log Filter Format									
Bit	7 6 5 4 3 2 1						1	0		
Byte										
0	DS	SPF(1b)	PAGE CODE(30h)							
1		SUBPAGE CODE (02h or 04h)								
2	(MSB)									
				PAGE LEN	IGTH(n-3)					

3	(LSB)
4	
	Log Filter Parameter
n	

Log Filter is used to set the filter rules for the log. It can change the filter level and update pattern to indicate what specific log can go to the entries.

Table 17 Log Filter Parameter Format

	Log Filter Parameter Format									
Bit Byte	7	6	5	4	3	2	1	0		
0	(MSB)	(MSB) PARAMETER CODE								
1	(LSB)									
2	DU	Obsolete	TSD	ETC	TI	МС	Format a	ND LINKING		
3				PARAMETER	_ENGTH(n-3)					
4				FILTER C	ONTROL					
n										

Table 18 Log Filter Control Format for Main Firmware Log Filter

	7	6	5	4 3 2	2	1	0		
Bit									
Byte									
0		FILTER LEVEL							
1		FILTER COUNT n(MAX 16)							
2	LOG FILTER DESCRIPTOR LIST(first)								
14									
		LOG FILTER DESCRIPTOR LIST(last)							
2+(n-									
2+(n- L)*13					,				
2+(n- L)*13					,				
2+(n- 1)*13 14+(n					,				

Table 19 Log Filter Control Format for EMIP Firmware Log Filter

	Log Filter Control Format for EMIP Firmware Log Filter							
Bit Byte	7	6	5	4	3	2	1	0
0		Logical PHY ID						
1				FILTER COUN	NT n(MAX 16)			

2	LOG FILTER DESCRIPTOR LIST(first)
14	
2+(n- 1)*13	LOG FILTER DESCRIPTOR LIST(last)
14+(n	
- 1)*13	

Logical PHY ID The field specifies the logical PHY ID to filter the EMIP firmware log on this PHY. The valid range of logical PHY ID is zero to (logical PHY count- 1). Each EMIP log select command can only filter the EMIP log for a single PHY at a time.

Table 20 Log Filter Descriptor Format for Main Firmware Log Filter

	Log Filter Descriptor Format for Main Firmware Log Filter									
Bit Byte	7	6	5	4	3	2	1	0		
0	APPLICATION FILTER INDEX									
1				MA	SK					
4										
5				PATT	ERN					
8										
9		FILTER TYPE								
12										

Table 21 Log Filter Descriptor Format for EMIP Firmware Log Filter

		Log Filte	r Descriptor	Format for EM	IIP Firmware	Log Filter				
Bit Byte	7	6	5	4	3	2	1	0		
0	APPLICATION FILTER INDEX									
1		MASK								
4										
5		Mode								
8										
9		Reserved								
12										

APPLICATION FILTER INDEX

This field is the index of the filter descriptor in this log

select command and starts from 0.

MASK This field specifies the 32 bits EMIP event log mask to indicate which event EMIP firmware will do event logging.

MODE This field specifies the EMIP event mode. The EMIP event mode is defined as below:

- 0x000000: EMIP IDLE mode.
- 0x000001: EMIP BCT mode.
- 0x000002: EMIP SAS buffering mode.
- 0x000003: EMIP SATA buffering mode.

For the filter control field description, please refer PM73206_04 SXP 12G Software/Firmware User Manual.

3.1.8 LOG SENSE

			LOG	SENSE Com	mand			
Bit	7	6	5	4	3	2	1	0
Byte								
0				OPERATION	N CODE (4Dh)			
1		Reserved Obsolete SP						
2		PC PAGE CODE						
3		SUBPAGE CODE						
4								
5				Res	erved			
6								
7	(MSB)							
				PARAMETER	LIST LENGTH			
8								(L!
9				CON	ITROL			

Table 22 LOG SENSE command

3.1.8.1 Supported Pages and Subpages log page

CLS SES firmware reports all kinds of the supported pages and subpages. Use LOG SENSE and set the page to 0x00 and subpage to 0xff, then supported pages and subpages will be listed.

Page	Subpage	Description		
30h	01h	Main Firmware Log Retrieve log page		
	02h	Main Firmware Log Filter log page		
	03h	EMIP Firmware Log Retrieve log page		

Table 23 Pages and Subpages supported.

	04h	EMIP Firmware Log Filter log page
00h	FFh	All Current Pages and Subpages Supported

3.1.8.2 Log Retrieve

LOG SENSE command must be executed after LOG SELECT set the last n entries, if using the LOG SENSE but not indicating the last n entries by LOG SELECT, the host will get the ILLEGAL REQUEST and LOG SENSE will be terminated. The detail rule of LOG SENSE with LOG SELECT is explained in the LOG SELECT for log retrieve.

Table 24 LOG SENSE Response Buffer Format

			LOG SENS	E Response Bu	ffer Format			
Bit Byte	7	6	5	4	3	2	1	0
0	(MSB)				N			
1				Remaining Er	itries Number			(LSB)
2	(MSB)				- · · · ·			
3				Really Acquired	Entries Number	ſ		(LSB)
4				Entries	s Data			
n								

Remaining Entries Number It reflects how many entries should be read again after one LOG SENSE command, 0 means that all of the entries data are finished to acquire.

Really Acquired Entries Number It reflects how many entries have been read after one LOG SENSE command.

Entries Data Fill the real entries data, the data sequence is little endian.

3.1.8.3 Log Filter Rule

LOG SENSE reports the current filter rule, if not using LOG SELECT to indicate the filter rule and count, LOG SENSE will report all of the filters and their configuration. If using LOG SELECT to indicate the filter rule and count, LOG SENSE will report the filter data with the indicated filter count.

Note: LOG SELECT and LOG SENSE cannot support the multi- initiator access mode.

3.1.9 MODE SELECT

Table 25 MODE SELECT command

			MODE	SELECT com	nand			
	7	6	5	4	3	2	1	0
Bit								
Byte								

0		OPERATION COD	Æ (55h)	
1	Reserved	PF	Reserved	SP
2		Reserved		
6				
7	(MSB)	PARAMETER LIST	IENGTH	
8			LENGTH	(LSB)
9		CONTROL(00	Dh)	

The following mode pages are supported for the MODE SELECT command:

- Control
- Protocol Specific Port

3.1.9.1 Control mode page

			SAS (Control Mode I	Page			
Bit Byte	7	6	5	4	3	2	1	0
0	PS (0b)	SPF (0b)		•	PAGE CO	DE (0Ah)		
1				PAGE LENG	GTH (0Ah)			
2		TST		TMF_ONLY	DPICZ	D_SENSE	GLTSD	RLEC
3		QUEUE ALGOR	ITHM MODIFIER		NUAR	QI	Frr	Obsolete
4	VS	RAC	UA_INTL	CK_CTRL	SWP		Obsolete	1
5	ATO	TAS	ATMPE	RWWP	Reserved	A	UTOLOAD MOD	DE
6				Obso	lete			
7								
8	(MSB)							
9				BUSY TIMEO	UT PERIOD			(LSI
10	(MSB)							C -
11			EXTEN	IDED SELF-TEST	COMPLETION	TIME		(LS

Table 26 SAS Control mode page

Currently, CLS SES firmware only supports that Qerr, TAS and TST are 0. If one of them is set to non -zero, CLS SES firmware returns CHECK CONDITION status with additional INVALID PARAMETERS LIST. SPF(0), PS(0), PAGE CODE(0x0A) and PAGE LENGTH(0x0A) are also checked. If one of them has the wrong value, the CLS SES firmware returns CHECK CONDITION status with additional INVALID PARAMETERS LIST. The other bits, setting value are not implemented.

Detail definitions of each field refer to SCSI Primary Commands – 4 (SPC-4).

3.1.9.2 Protocol Specific Port mode page

			SAS Port Mo	ode Page - Sho	ort Format			
Bit Byte	7	6	5	4	3	2	1	0
0	PS (0b)	SPF (0b)			PAGE CO	DE (19h)		
1				PAGE LENG	TH (0Eh)			
2	Reserved	Continue AWT (1b)	Broadcast Asynchronous Event (0b)	Ready LED Meaning (0b)		Protocol Id	entifier (6h)	
3			•	Reser	ved			
4 5	(MSB)			I_T Nexus I	Loss Time			(LSB)
6 7	(MSB)			Initiator Respo	nse Timeout			(LSB)
8 9	(MSB)			Reject To C	pen Limit			(LSB)
10				Reser	ved			
 15								

Table 27 SAS Port Mode Page (Short Format)

The updated value of this page can influence the BROADCAST ASYNCHRONOUS EVENT action. Currently, port mode page just changes the Boardcast Asynchronous Event field but other fields remain reserved with the MODE SELECT command. The CLS SES firmware checks the SPF(0), PS(0), PAGE CODE(0x19) and PAGE LENGTH(0x0E). If one of them has the wrong value, the CLS SES firmware returns a CHECK CONDITION status with additional INVALID PARAMETERS LIST.

3.1.10 MODE SENSE

Table 28 MODE SENSE command

		MOD	E SENSE comn	nand			
7	6	5	4	3	2	1	0

Bit Byte								
0				OPERATION (CODE (5Ah)			
1		Reserved		LLBAA	DBD		Reserved	
2	PC	C			PAGE	CODE		
3			•	SUBPAGE	ECODE			
4				Reser	ved			
5								
6								
7	(MSB)			ALLOCATIO				
8				ALLOCATIO				(LSB)
9				CONTRO	L(00h)			

DBD, LLBA Ignored. The LLBAA and DBD bits shall be set to zero.

PC Specifies the type of mode parameter values to return. If 00b returns current values; if 11b returns saved values, and if 10b returns default values; if 01b, returns changeable values in the form of a bitmap, where of fields in the requested pages that have changeable values are set to all 1's. In CLS SES firmware, support PC value shown as below:

- 00h returns current values
- 10h returns default values

PAGE CODE and **SUBPAGE CODE** Specifies the mode pages to be returned, from the following table.

Page Code	Subpag e Code	Description					
02h	n/a	Disconnect-Reconnect mode page					
0Ah	n/a	Control mode page					
18h	n/a	Protocol Specific Logical Unit mode page					
19h	n/a	Protocol Specific Port mode page					
3Fh	00h/FFh	Return all pages and subpages					

Table 29 Supported Mode page and subpage

CLS SES firmware gets the Control mode parameter default as <u>Control mode page</u>.

CLS SES firmware gets the Port mode parameter default as Protocol Specific Port mode page

3.1.10.1 Disconnect-Reconnect mode page

Table 30 Disconnect-Reconnect mode page

			Disconnec	t-Reconnect M	Mode Page			
Bit	7	6	5	4	3	2	1	0

Byte							
0	PS (0b)	SPF (0b)	I	L	PAGE CO	DDE (02h)	
1		1	P	AGE LENG	GTH (OEh)		
2				Rese	rved		
3							
4	(MSB)			Inactivity	, Timo Limit		
5			DUS	Πασινιι	/ Time Limit		(LSB)
6				Rese	rved		
7	_						
8	(MSB)		Maxim		ect Time Limit		
9	_		Maxiii			-	(LSB)
10	(MSB)		Mavin	num Purc	t Size (0009h)		
11	_		Maxin		1 5128 (000911)		(LSB)
12				Rese	rved		
13	_						
14	(MSB)			First Bu	rct Sizo		
15				THISC DUI	JLC		(LSB)

Maximum Connect Time Limit The field specifies the maximum duration of a single interconnect tenancy. If the connect time limit is exceeded, then the target port must conclude the interconnect tenancy. The virtual SSP Port in the CLS SES firmware supports the MCT timer.

Remaining fields of Disconnect-Reconnect mode page are not supported.

Detail definitions of each field refer to SCSI Primary Commands – 4 (SPC-4).

3.1.10.2 Protocol Specific Logical Unit mode page

Table 31 SAS Logical Unit mode page (Short Format)

		SA	S Logical U	Init Mode Page - S	Short Forma	t		
Bit Byte	7	6	5	4	3	2	1	0
0	PS (0b)	SPF (0b)			PAGE CO	DE (18h)		
1				PAGE LENGT	H (06h)			
2		Reserved		Transport Layer Retries (0b)		Protocol Ide	entifier (6h)	
3				Reserve	ed			
4								

5	
6	
7	

Transport Layer Retries This bit set to one specifies that, for commands received in COMMAND frames with the TLR CONTROL field, the target port must support transport layer retries for XFER_RDY and DATA frames for the logical unit. The bit is not implemented.

Remaining fields of Protocol Specific Logical Unit mode page are not supported.

Detail definitions of each field refer to SCSI Primary Commands - 4 (SPC-4).

3.1.11 Report LUN

The REPORT LUNs return a list of the logical units. CLS SES firmware reports only a single logical unit (LUN 0).

Table 32 Report LUN command

	REPORT LUNS command							
Bit Byte	7	6	5	4	3	2	1	0
0				OPERATION C	CODE (0Ah)			
1				Reser	ved			
2				SELECT R	EPORT			
3		Reserved						
4								
5								
7	(MSB)							
8		ALLOCATION LENGTH (LSB)						
9								
10		Reserved						
11				CONTRO	L(00h)			

Table 33 Report LUNs Data

	REPORT LUNS Data							
Bit	7	6	5	4	3	2	1	0
Byte								
0	(MSB)							
		LUN LIST LENGTH (8h) (LSB)						
3								
4		Reserved						
7								

8	FIRST LUN (0h)
15	

3.2 Status Code

CLS SES firmware returns the following SCSI status codes:

Table 34 Supported Sense Code

Value	Name	Task Ended		
00h	COOD	Yes, no sense data		
02h	CHECK CONDITION	Yes, with sense data		
08h	BUSY	Yes, no sense data		
28h	TASK SET FULL	Yes, no sense data		
40h	TASK ABORTED	Yes, no sense data		

3.3 Sense Keys and Additional Sense Codes

The SENSE KEY, ASC and ASCQ fields in the sense data returned by CLS SES firmware when the status code of a SCSI command is CHECK CONDITION, may have the following values:

Sense Key	ASC	ASCQ	Description
0x06	0x29	0x03	BUS DEVICE RESET OCCURRED
0x06	0x2F	0x00	COMMAND CLEARED BY ANOTHER INITIATOR
0x0B	0x44	0x00	INTERNAL TARGET FAILURE
0x05	0x20	0x00	INVALID COMMAND OPERATION CODE
0x05	0x24	0x00	INVALID FIELD IN CDB
0x05	0x26	0x00	INVALID FIELD IN PARAMETER LIST
0x05	0x49	0x00	INVALID MESSAGE ERROR
0x05	0x25	0x00	LOGICAL UNIT NOT SUPPORTED
0x06	0x29	0x00	POWER ON, RESET, OR BUS DEVICE RESET OCCURRED
0x05	0x35	0x01	UNSUPPORTED ENCLOSURE FUNCTION
0x05	0x39	0x00	SAVING PARAMETERS NOT SUPPORTED
0x0B	0x0E	0x01	INFORMATION UNIT TOO SHORT
0x0B	0x4B	0x02	TOO MUCH WRITE DATA

0x0B	0x4B	0x03	ACK/NACK TIMEOUT
0x0B	0x4B	0x04	NAK RECEIVED
0x0B	0x4B	0x05	DATA OFFSET ERROR
0x0B	0x4B	0x06	INITIATOR RESPONSE TIMEOUT

4 SCSI Enclosure Service

This section provides detailed definition of diagnostics pages and SES elements supported for CLS SES firmware

4.1 SES Overview

SCSI Enclosure Service (SES) is the service that establishes the mechanical environment, electrical environment, and external indicators and controls for the proper operation and maintenance of devices within an enclosure. The SES data is transported 'in-band' to and from the application client.

The SES pages are accessed via the SCSI commands SEND DIAGNOSTICS (control pages) and RECEIVE DIAGNOSTIC RESULTS (status pages).

CLS SES firmware applies "Standalone Enclosure Services Process" model that can be accessed by external host directly via the data channel. In shared mode when two Canisters work in one enclosure, both Canisters manages the enclosure services in "Active-Active" mode that provide a redundant service model to external host. In SES-3 Spec, this concept of "Multiple enclosure services processes in an enclosure" is illustrated in a figure as below:

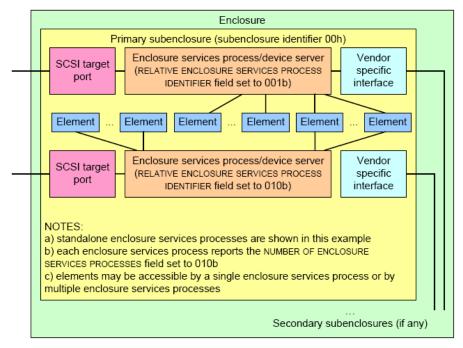


Figure 1 – Multiple Services Processes in an Enclosure

It is recommended for management application running at host side to use "Polling" as the reporting method when managing Enclosure via CLS SES firmware.

Asynchronous event notification(Broadcast(SES)) is also triggered when SAS domain about changes that occur to its Enclosure Status (02h) diagnostic page.¹

¹ Current CLS SES firmware support Broadcast(SES) triggered by HDD, Power supply and ESCE hotswap

4.1.1 RECEIVE DIAGNOSTIC RESULTS Command

The RECEIVE DIAGNOSTIC RESULTS command requests the device server to return data based on the most recent SEND DIAGNOSTIC command or a diagnostic page specified by the PAGE CODE field. The CDB of this command is defined as below:

Table 36 RECEIVE DIAGNOSTIC RESULTS Command

	RECEIVE DIAGNOSTIC RESULTS command							
Bit Byte	7	6	5	4	3	2	1	0
0	OPERATION CODE (1Ch)							
1	Reserved PCV						PCV	
2	PAGE CODE							
3	ALLOCATION LENGTH							
4								
5	CONTROL							

PCV

This filed (page code valid) specifies the enclosure services process returns either data based on the most recent SEND DIAGNOSTIC command (PCV = 0b) or is a diagnostic page specified by the PAGE CODE field (PCV = 1b).

4.1.2 SEND DIAGNOSTIC Command

The "SEND DIAGNOSTIC" command requests the enclosure services process to perform diagnostic operations on the SCSI target device, on the logical unit, or on both according to the parameter list. The CDB of this command is defined as below:

Table 37 SEND DIAGNOSTIC Command

	SEND DIAGNOSTIC command							
Bit Byte	7	6	5	4	3	2	1	0
0	OPERATION CODE (1Dh)							
1	SELF-TEST CODE			PF	Reserved	SELFTEST	DEVOFFL	UNITOFFL
2	Reserved							
3	PARAMETER LIST LENGTH							
4								
5				CON	TROL			

PF

A page format (PF) bit set to one specifies that the SEND DIAGNOSTIC parameters and any parameters returned by a following RECEIVE DIAGNOSTIC RESULTS command with the PCV bit set to zero contain a single diagnostic page. A PF bit set to zero specifies that all SEND DIAGNOSTIC parameters are vendor specific.

4.2 Diagnostic Pages

The table below shows the list of diagnostics pages that are supported in CLS SES firmware:

Page Code	Page Name	Control or Status	Description
00h	Supported Diagnostic Pages	Status	Contains a list of all diagnostic page codes implemented by this SES device.
01h	Configuration	Status	Returns information about the enclosure, including the list of SES elements in the enclosure.
02h	Enclosure Control	Control	Provides access to the control elements identified by the Configuration page.
	Enclosure Status	Status	Provides access to the status elements identified by the Configuration page.
04h	String Out	Control	Performs vendor-specific in-band diagnostics commands.
	String In	Status	Returns vendor-specific diagnostics binary string.
05h	Threshold Out	Control	Establish threshold values for sensor elements: including temperature / voltage / current sensors.
	Threshold In	Status	Reports threshold values for sensor elements: including temperature / voltage / current sensors.
07h	Element Descriptor	Status	Provides descriptive information for each element.
0Ah	Additional Element Status	Status	Provides additional information for device slot elements.
0Eh	Download Microcode Control	Control	Firmware upgrade.
	Download Microcode Status	Status	
10h	CLI Over SES Control	Control	Performs CLI commands. Or specify offset and length to fetch data.
	CLI Over SES Status	Status	Return CLI command implementation result string

Table 38 CLS SES firmwareSupported SES Pages

11h	Timestamp Set	Control	Request the enclosure service processor to initialize the timestamp.
	Timestamp Get	Status	Request the enclosure service processor to return the value of the timestamp.
12h	VPD Control	Control	Request the specified component replace the contents of its associated VPD in non-volatile storage with the given data. Or specify the offset and length to fetch the VPD data.
	VPD Status	Status	Request the VPD of the specified component to be retrieved.
13h	Log Control	Control	Request to clear Log Repository. Or specify the Start Entry and Entry Numbers to fetch Log Repository.
	Log Status	Status	Request the Log Repository to be retrieved.
14h	PHY Control	Control	Request to control each PHY's status
	PHY Status	Status	Request to report each PHY's status.
15h	Error Injection Control	Control	Request to configure an error injection entry or control the error injection process
	Error injection Status	Status	Request to get error injection status
16h	State Preservation Control	Control	Request to trigger a state preservation action
	State Preservation Status	Status	Request to get state preservation content

4.2.1 Supported Diagnostic Pages Diagnostic Page (00h)

Description

This page contains a list of all diagnostic page codes implemented by the enclosure services process in ascending order beginning with diagnostic page code 00h

Pages Contents

		5	Supported Dia	ignostic Page	s diagnostic p	bage						
Bit	7	6	5	4	3	2	1	0				
Byte			-									
				Page Heade	er		- <u>I</u>	I				
0				PAGE CO	DE (00h)							
1				Res	erved							
2	(MSB)	PAGE LENGTH (0Fh)										
3		(LSB)										
			1	Supported Pa	ges							
4			Supported	d Diagnostic Pa	ges diagnostic	page (00h)						
5			Co	onfiguration dia	gnostic page ((01h)						
6			Enclosure	e Control / Stat	us diagnostic p	age (02h)						
7			Str	ing Out / In dia	ignostic page (04h)						
8				shold Out / In a								
9				ent Descriptor o								
10				al Element Stati								
11					-	ostic page (0Eh)						
12				ES Control / St	-							
13				np Control / Stat								
14				Control / Status		. ,						
15			-	Control / Status		. ,						
16				Control / Status		. ,						
17			-	tion Control / Si	_							
18			State Preserv	vation Control /	Status diagnos	stic page (16h)						

Table 39 Supported Diagnostic Page Diagnostic Page

4.2.2 Configuration Diagnostic Page (01h)

Description

The Configuration diagnostic page returns information about the enclosure, including the list of elements in the enclosure. The element list includes all elements with defined element status or controls in the enclosure. The Configuration diagnostic page provides enclosure descriptor information and parameters as well as descriptive text identifying element types in more detail.

Pages Contents

Table 40 Configuration Diagnostic Page

			Config	uration diagno	stic page							
Bit	7	6	5	4	3	2	1	0				
Byte				L								
				Page Heade	r							
0				PAGE CC	DE (01h)							
1		NUMBER OF SECONDARY SUBENCLOSURES (00h)										
2	(MSB)											
3				PAGE LEN	GTH (n-3)			(LSB)				
4				GENERAT	ON CODE							
7												
			Encl	osure Descrip	tor List							
8			Enclosu	re descriptor(s)	(one per suber	nclosure)						
			Туре	Descriptor He	ader List							
			Type des	criptor header(s) (one per elen	nent type)						
	<u> </u>		Туре	e Descriptor T	ext List							
			Type descrip	otor text(s) (one	per type descr	iptor header)						
n												

Please see the following subsections for more detailed information of Enclosure Descriptor List, Type Descriptor Text List.

4.2.2.1 Enclosure Descriptor

The Enclosure Descriptor provides identification information of the target enclosure.

Bit Byte	7	6	5	4	3	2	1	0			
0	Reserved RELATIVE ENCLOSURE SERVICES Reserved NUMBER OF ENCLOSURE SERVICES PROCESS IDENTIFIER (001b or 010b) PROCESSES(010b) PROCESSES(010b)										
1		SUBENCLOSURE IDENTIFIER									
2		NUMBER OF TYPE DESCRIPTOR HEADERS									
3		ENCLOSURE DESCRIPTOR LENGTH									
4			E	NCLOSURE LOG	ICAL IDENTIFIE	R					
11											
12		ENCLOSURE VENDOR IDENTIFIER									
19											

Table 41 Enclosure Descriptor

20	PRODUCT IDENTIFICATION
35	
36	PRODUCT REVISION LEVEL
39	
40	Vendor-specific enclosure information (32 Bytes Reserved as 00h)
m	

NUMBER OF ENCLOSURE SERVICES PROCESSES

This field specifies the number of enclosure services processes in the subenclosure. A value of 0h indicates the number is not known.

RELATIVE ENCLOSURE SERVICES PROCESS IDENTIFIER

This field specifies the enclosure services process relative to other enclosure services processes in the subenclosure. A value of 0h is reserved.

SUBENCLOSURE IDENTIFIER

This filed specifies the subenclosure described by this enclosure descriptor

The NUMBER OF TYPE DESCRIPTOR HEADERS

This field specifies the number of type descriptor headers in the Configuration diagnostic page with this subenclosure identifier

ENCLOSURE DESCRIPTOR LENGTH

This field specifies the number of bytes that follow in the enclosure descriptor.

ENCLOSURE LOGICAL IDENTIFIER

This field contains a unique logical identifier for the subenclosure. It shall use an 8-byte NAA identifier, the format of which is defined in SPC-4 vital product data.

ENCLOSURE VENDOR IDENTIFIER

This field contains the identification string for the vendor of the subenclosure in the same format as specified for the VENDOR IDENTIFICATION field of the standard INQUIRY data. The ENCLOSURE VENDOR IDENTIFICATION field may contain a different value than the vendor identification of the logical unit providing the enclosure services.

PRODUCT IDENTIFICATION

This field contains the product identification string for the subenclosure in the same format as specified for the PRODUCT IDENTIFICATION field of the standard INQUIRY data.

PRODUCT REVISION LEVEL

This field contains the product revision level string for the subenclosure in the same format as specified for the PRODUCT REVISION LEVEL field of the standard INQUIRY data.

VENDOR SPECIFIC ENCLOSURE INFORMATION

This field is reserved as 00h

4.2.2.2 Type Descriptor

The Type Descriptor Header List contains a 4-byte descriptor header for each type of element that is implemented in the system. Its format is defined as follow:

Table 42 Type Descriptor Header

Bit Byte	7	6	5	4	3	2	1	0		
0		ELEMENT TYPE								
1		NUMBER OF POSSIBIE ELEMENTS								
2		SUBENCLOSURE IDENTIFIER								
3			Т	YPE DESCRIPTO	OR TEXT LENGT	Ή				

The Type Descriptor Text List contains type descriptor texts in the same order as the type descriptor headers.

For CLS SES firmware, the data of the Type Descriptor Header List and the Type Descriptor Text List is defined as below:

ELEMENT TYPE	NUMBER OF POSSIBIE ELEMENTS	SUBENCLOSURE IDENTIFIER	TYPE DESCRIPTOR TEXT LENGTH	TYPE DESCRIPTOR TEXT (ASCII String)
17h	N/A *	00h	11h	Array Device Slot
02h	N/A *	00h	0Ch	Power Supply
03h	N/A *	00h	07h	Cooling
04h	N/A *	00h	12h	Temperature Sensor
07h	N/A *	00h	10h	ESCE
0Eh	N/A *	00h	11h	Enclosure
12h	N/A *	00h	0Eh	Voltage Sensor
13h	N/A *	00h	0Eh	Current Sensor
18h	N/A *	00h	0Ch	SAS Expander
19h	N/A *	00h	0Dh	SAS Connector

Table 43 CLS SES firmwareType Descriptor Values

*: NUMBER OF POSSIBLE ELEMENTS is platform-specific data, each platform will have its own configuration

4.2.3 Enclosure Control Diagnostic Page (02h)

Description

The Enclosure Control diagnostic page provides access to the control elements identified by the Configuration diagnostic page.

Pages Contents

Table 44 Enclosure Control Diagnostic Page

			Enclosu	re Control diag	gnostic page						
Bit	7	6	5	4	3	2	1	0			
Byte											
				Page Head	er						
0				PAGE CO	DDE (02h)						
1		Reserved INFO NON-CRIT CRIT UNF									
2	(MSB)							·			
3				PAGE LEN	NGTH (n-3)						
								(LSB)			
4				EXPECTED GEN	IERATION COD	E					
7											
			Co	ontrol descript	tor list						
8				Control des	criptor (first)						
				Control des	criptor (last)						
n											

The INFO, NON-CRIT, CRIT, and UNRECOV bit are each mandatory and may be set to one in the enclosure by the application client when one or more of the elements are detected not operating normally. Please see the following subsections for more detailed information of Control Descriptor List.

4.2.3.1 Control Descriptor

The control descriptor list contains a control descriptor for each type descriptor header in the Configuration diagnostic page. The format of control descriptor is defined as follow:

Bit	7	6	5	4	3	2	1	0					
Byte													
0	Overall Control Element												
3													
			Individ	lual Control El	ement List								
4				Individual contr	ol element (first))							
7													
m - 3		Individual control element (last)											
m													

Table 45 Control Descriptor

The overall control element provides control for all the elements corresponding to the type descriptor header. The individual control element list contains an individual control element for each of the possible elements identified by the NUMBER OF POSSIBLE ELEMENTS field in the corresponding

type descriptor header. Each individual control element contains control information for one specific element.

4.2.3.2 Control Element

The general format for the control element is defined as follow:

Table 46 Control Element Format

Bit	7	6	5	4	3	2	1	0				
Byte												
0		COMMON CONTROL										
	SELECT	PRDFAIL	DISABLE	RST SWAP	Reserved							
1			Elem	ent type specifi	c control inform	ation						
2												
3												

SELECT

This bit specifies whether or not the enclosure services process should perform the control functions defined by the other bits in the control element.

PRDFAIL

This bit is not supported.

DISABLE

This bit is not supported.

RST SWAP

This bit is not supported.

The element type specific control information is defined separately for each element type. Please refer to 4.3 Element Definitions for more information.

4.2.4 Enclosure Status Diagnostic Page (02h)

Description

The Enclosure Status diagnostic page provides access to the status elements identified by the Configuration diagnostic page.

Pages Contents

Table 47 Enclosure Status Diagnostic Page

	Enclosure Status diagnostic page										
Bit Byte	7	6	5	4	3	2	1	0			
		1		Page Heade	er	1 1		1			
0				PAGE CC	DDE (02h)						
1		Reserved INVOP INFO NON-CRIT CRIT UN									
2	(MSB)			1	1	1		-1			
3		PAGE LENGTH (n-3)									
4				CENEDAT	ION CODE			(LSB)			
4 7				GLINEKAT	ION CODE						
			St	atus descripto	or list						
8					criptor (first)						
				Status deso	criptor (last)						
n											

The INVOP, INFO, NON-CRIT, CRIT, and UNRECOV bit are each mandatory and have the following meanings:

INVOP	invalid operation requested
INFO	information conditions exist
NON-CRIT	non-critical conditions exist
CRIT	critical conditions exist
UNRECOV	unrecoverable conditions exist

The bits may be read with an allocation length greater than one and may be examined by an enclosure polling procedure to determine if events have occurred that require reading the complete page. The bits may be set by either the enclosure services process or with the Enclosure Control diagnostic page.

Please see the following subsections for more detailed information of Status Descriptor List.

4.2.4.1 Status Descriptor

The status descriptor list contains a status descriptor for each type descriptor header in the Configuration diagnostic page. The format of status descriptor is defined as follow:

Bit Byte	7	6	5	4	3	2	1	0		
0	Overall Status Element									
3										
Individual Status Element List										

Table 48 Status Descriptor

4	Individual status element (first)
7	
m - 3	Individual status element (last)
m	

The overall status element provides summary status for all the elements described by the type descriptor header. The individual status element list contains an individual status element for each of the possible elements identified by the NUMBER OF POSSIBLE ELEMENTS field in the corresponding type descriptor header. Each individual status element contains status information for one specific element.

4.2.4.2 Status Element

The general format for the status element is defined as follow:

Table 49 Status Element Format

	7	6	5	4	3	2	1	0		
Bit Byte										
0	COMMON STATUS									
	Reserved	PRDFAIL	DISABLED	SWAP		ELEMENT STATUS CODE				
1			Elem	ent type specif	ic status inform	ation				
2										
3										

PRDFAIL

This predicted failure bit is used to indicate that a failure has been predicted, this bit is not supported and always reports zero(0b).

DISABLED

This bit indicates that the element has been disabled, this bit is not supported and always reports a zero (0b).

SWAP

This swap bit is not supported and always reports a zero (0b).

ELEMENT STATUS CODE

For the overall status element, this field will report the combined common status from all the individual status. Each individual element status element reports its own status via this field.

The status priority for individual and overall common status is defined as below

Table 50 Status Priority for individual and Overall Common Status

Priority	Code	Name
1(highest)	2	Critical
2	3	Noncritical
3	7	Not Available
4	6	Unknown
5	5	Not Installed
6(lowest)	1	OK

The element type specific status information is defined separately for each element type. Please refer to 4.3 Element Definitions for more information.

4.2.5 String Out Diagnostic Page (04h)

Description

The String Out diagnostic page transmits an enclosure dependent binary string from the application client to the enclosure services process of the enclosure. The format of the binary string is vendor specific.

Pages Contents

Table 51 String Out Diagnostic Page

			Strin	g Out Diagnos	tic Page							
Bit Byte	7 6 5 4 3 2 1 0											
		•	1	Page Heade	r			•				
0		PAGE CODE (04h)										
1				Obsolet	æ (00h)							
2	(MSB)											
3				PAGE LEN	GTH (n-3)			(LSB)				
			Vendor Spe	ecific Binary S	tring Out Data	1						
4				COMMA	ND CODE							
5				USER	DATA							
n												

CLS SES firmware utilizes the specific function definitions of String Out diagnostic page. The table below is the summary of COMMAND CODE and USER DATA supported by String Out diagnostic page.

Table 52 String Out Diagnostic Commands

Command Code	Function	User Data		
0x01	Download Firmware	Firmware image binary data		
0x02~0xff	Reserved	Reserved		

4.2.6 String In Diagnostic Page (04h)

Description

The String In diagnostic page transmits an enclosure dependent binary string from the enclosure services process of the enclosure to the application client. The format of the binary string is vendor specific.

Pages Contents

Table 53 String In Diagnostic Page

			Strir	ng In Diagnost	ic Page						
Bit Byte	7 6 5 4 3 2 1 0										
	1		1	Page Heade	r						
0				PAGE CO	DE (04h)						
1		Obsolete (00h)									
2	(MSB)										
3				PAGE LENG	TH (00 EEh)			(LSB			
			Vendor Sp	ecific Binary S	tring In Data						
4				FW Downl	oad Status						
5		Reserved									
241											

Table 54 Firmware Download Status

FW Download Status	Comments
0x00	Firmware Download Ready
0x01	Firmware Download In Progress
0x02	Firmware Download Header Incorrect
0x03	Firmware Download Offset Incorrect
0x04	Firmware Download CRC Incorrect
0x05	Firmware Download Length Incorrect
0x06	Firmware Download Hardware Error
0x07	Firmware Download Complete
0x08	Firmware Download Complete Image Pending Active
0x09	Firmware Download Complete Date Pending Active

4.2.7 Threshold Out Diagnostic Page (05h)

Description

The Threshold Out diagnostic page is transmitted to the enclosure services process to establish threshold values for those elements that have limited sensing capability.

Pages Contents

Table 55 Threshold Out Diagnostic Page

			Thresh	nold Out Diagno	ostic Page							
Bit Byte	7 6 5 4 3 2 1 0											
				Page Heade	r							
0				PAGE CO	DE (05h)							
1				Reserve	d (00h)							
2	(MSB)											
3				PAGE LEN	GTH (n-3)			(LSB				
4				EXPECTED GEN	ERATION CODE			,				
7												
			Thresh	old control des	criptor list							
8			٢	Threshold control	descriptor (firs	t)						
n				Threshold contro	descriptor (last	t)						

Please see the following subsections for more detailed information of Threshold Control Descriptor List.

4.2.7.1 Threshold Control Descriptor

The threshold control descriptor list contains a threshold control descriptor for each type descriptor header in the Configuration diagnostic page. The format of threshold control descriptor is defined as follow:

Bit	7	6	5	4	3	2	1	0			
Byte											
0	Overall Threshold Control Element										
3											
	Individual Threshold Control Element List										
4			Indivi	dual threshold o	control element	(first)					
7											
m - 3		Individual threshold control element (last)									
m											

Table 56 Threshold Control Descriptor

The overall threshold control element provides shared threshold control for all the elements described by the type descriptor header. The individual threshold control element list contains an individual threshold control element for each of the possible elements identified by the NUMBER OF POSSIBLE ELEMENTS field in the corresponding type descriptor header. Each individual threshold control element contains threshold control information for one specific element.

4.2.7.2 Threshold Control Element

The general format for the threshold control element is defined as follow:

	7	7 6 5 4 3 2 1 0								
Bit										
Byte										
0			REQUES	ted high crit	TICAL THRESHC	LD (UC)				
1			REQUEST	fed high war	NING THRESHO	LD (UW)				
2		REQUESTED LOW WARNING THRESHOLD (LW)								
3		REQUESTED LOW CRITICAL THRESHOLD (LC)								

Table 57 Threshold Control Element Format

The threshold values must be specified in proper order otherwise firmware will ignore the contents of all the requested threshold fields.

Threshold field format is defined separately for each threshold-based element type, their threshold field definitions are defined as below:

- Temperature sensors: REQUESTED THRESHOLD fields are in degrees Celsius, offset by +20 degrees. The range of the value expresses a temperature threshold between -19 and +235 degrees Celsius. A value of 00h is reserved.
- Voltage sensor: REQUESTED THRESHOLD fields are in percentages of the nominal voltage in units of 0.5 %.
- Current sensor: HIGH CRITCAL and HIGH WARNING are in percentages of the nominal current in units of 0.5 %, LOW WARNING and LOW CRITICAL are ignored.

4.2.8 Threshold In Diagnostic Page (05h)

Description

The Threshold In diagnostic page is transmitted from the enclosure services process to the application client to report the actual threshold values for those elements that have limited sensing capability.

Pages Contents

Table 58 Threshold In Diagnostic Page

			Thres	hold In Diagno	stic Page								
Bit Byte	7												
				Page Heade	r								
0				PAGE CO	DE (05h)								
1		Reserved		INVOP		Res	erved						
2	(MSB)												
3				PAGE LEN	GTH (n-3)			(LSB)					
4				GENERAT	ION CODE			, , , , , , , , , , , , , , , , , , ,					
7													
			Thresh	old status des	criptor list								
8				Threshold status	descriptor (first	t)							
			-	Threshold status	descriptor (last	I)							
n													

Please see the following subsections for more detailed information of Threshold Status Descriptor List.

INVOP

The "invalid operation" bit shall be set to one if a Threshold Out diagnostic page with an invalid format has previously been transmitted to the enclosure services process and an application client has not already been informed of the error.

4.2.8.1 Threshold Status Descriptor

The threshold status descriptor list contains a threshold status descriptor for each type descriptor header in the Configuration diagnostic page. The format of threshold status descriptor is defined as follow:

Bit	7	6	5	4	3	2	1	0				
Byte												
0	0 Overall Threshold Status Element											
3												
	Individual Threshold Status Element List											
4			Indiv	idual threshold	status element ((first)						
7												
m - 3		Individual threshold status element (last)										
m												

Table 59 Threshold Status Descriptor

The overall threshold status element provides shared threshold status for all the elements described by the type descriptor header. The individual threshold status element list contains an individual threshold status element for each of the possible elements identified by the NUMBER OF POSSIBLE ELEMENTS field in the corresponding type descriptor header. Each individual threshold status element contains threshold status information for one specific element.

4.2.8.2 Threshold Status Element

The general format for the threshold status element is defined as follow:

Table 60 Threshold Status Element Format

	7	6	5	4	3	2	1	0						
Bit														
Byte														
0		HIGH CRITICAL THRESHOLD (UC)												
1			HI	GH WARNING T	Threshold (U)	W)								
2		LOW WARNING THRESHOLD (LW)												
3			L	OW CRITICAL T	Threshold (LC	C)	LOW CRITICAL THRESHOLD (LC)							

The threshold fields indicate the thresholds that the enclosure is using at the time the Threshold In diagnostic page is returned.

Threshold field format is defined separately for each threshold-based element type. Their threshold field definitions are as follow:

- Temperature sensors: THRESHOLD fields are in degrees Celsius, offset by +20 degrees. The range of the value expresses a temperature threshold between -19 and +235 degrees Celsius. A value of 00h is reserved.
- Voltage sensor: THRESHOLD fields are in percentages of the nominal voltage in units of 0.5 %.
- Current sensor: HIGH CRITCAL and HIGH WARNING are in percentages of the nominal current in units of 0.5 %, LOW WARNING and LOW CRITICAL are reserved.

4.2.9 Element Descriptor Diagnostic Page (07h)

Description

The Element Descriptor diagnostic page returns a list of vendor-specific, variable-length ASCII strings, one for each element in the Enclosure Status diagnostic page.

Pages Contents

Table 61 Element Descriptor Diagnostic Page

			Element I	Descriptor Dia	gnostic Page			
Bit Byte	7	6	5	4	3	2	1	0
			1	Page Heade	r			
0				PAGE CC	DE (07h)			
1				Reserve	ed (00h)			
2	(MSB)							
3				PAGE LEN	GTH (n-3)			(LSB)
4				GENERAT	ION CODE			
7								
			Eleme	nt descriptor b	y type list			
8			Element desc	criptor by type d	escriptor (first e	element type)		
			Element des	criptor by type c	lescriptor (last e	element type)		
n								

4.2.9.1 Element Descriptor by Type Descriptor

The element type descriptor list contains an element descriptor by type descriptor for each element type. The format of element descriptor by type descriptor is defined as follow:

Table 62 Element Descriptor by Type Descriptor

Bit Byte	7	7 6 5 4 3 2 1 0									
0		Overall element descriptor									
		Individual element descriptor (first element)									
		Individual element descriptor (last element)									
X											

The overall descriptor contains any descriptor information applying to all elements of the type or describing elements that have no individual descriptor information. Following the overall descriptor, there shall be one element descriptor for each of the possible elements identified by the NUMBER OF POSSIBLE ELEMENTS field in the corresponding type descriptor header in the Configuration diagnostic page. Each element descriptor contains the descriptive information for the element.

4.2.9.2 Element Descriptor

The general format for the overall descriptor and the element descriptor is defined as follow:

Table 63 Element Descriptor Format

Bit	7	6	5	4	3	2	1	0			
Byte											
0		Reserved									
1											
2	(MSB)										
3		DESCRIPTOR LENGTH (m-3)									
		(LSB)									
4		DESCRIPTOR ASCII STRING									
m											

For CLS SES firmware, the Descriptor ASCII String data of the Element Descriptor List of each element type is defined as below:

Table 64 Element Descriptor ASCII String

Element Type	Overall Element	Overall Element	Number of	Individu	ual Element D	escriptor
Code	Descriptor Length	Descriptor	Possible Elements	Filed Name	Field Length	Comment
17h	17	Array Device Slot	N/A *	SAS ADDRESS	8	Disk SAS address in individual element descriptors is collected by firmware.
02h	12	Power	N/A *	PS SERIAL NUMBER	16	PS inventory information in
		Supply		PS FW REVISION	4	individual element descriptors is collected by firmware through reading PS VPD
03h	7	Cooling	N/A *	Associated element descriptor	Associated element descriptor length	Associated element descriptor.
04h	18	Temperature Sensor	N/A *	Associated element descriptor	Associated element descriptor length	Associated element descriptor.
07h	12	ESCE	N/A *	SAS ADDRESS	8	Canister inventory information in individual element descriptors is collected by firmware through reading Canister VPD contents.
0Eh	15	Enclosure	N/A *	None	0	None
12h	14	Voltage Sensor	N/A *	Associated element descriptor	Associated element descriptor length	Associated element descriptor
13h	14	Current Sensor	N/A *	Associated element descriptor	Associated element descriptor length	Associated element descriptor
18h	12	SAS Expander	N/A *	None	0	None

19	h	13	SAS Connector	N/A *	Associated element descriptor	Associated element descriptor length	Associated element descriptor
----	---	----	------------------	-------	----------------------------------	---	----------------------------------

*: NUMBER OF POSSIBLE ELEMENTS is platform-specific data, each platform will have its own configuration

4.2.10 Additional Element Status Diagnostic Page (0Ah)

Description

In the CLS SES firmware implementation, the Additional Element Status diagnostic page provides additional information about device slot element.

Pages Contents

Table 65 Additional Element Status Diagnostic Page

			Additional El	ement Status	Diagnostic Pa	ge		
Bit Byte	7	6	5	4	3	2	1	0
			1	Page Heade	er		1	
0				PAGE CC	DE (0Ah)			
1				Reserve	ed (00h)			
2	(MSB)							
3				PAGE LEN	IGTH (n-3)			(LSB
4				GENERAT	ION CODE			
7								
			Additional E	lement Status	descriptor lis	t		
8			Additi	ional Element Si	atus descriptor	(first)		
			Addit	ional Element S	tatus descriptor	(last)		
n								

The format the additional element status descriptor conforms to SES-3 Spec. Please refer to SES-3 Spec, section 6.1.13.3.2 Additional Element Status descriptor protocol-specific information for Device Slot elements and Array Device Slot elements for SAS for detailed format of the additional element status descriptor.

4.2.10.1 Additional Element Status Descriptor

The additional element status descriptor list contains an additional element status descriptor for each element for which the enclosure services process provides additional information.

Bit	7	6	5	4	3	2	1	0	
Byte									
0	INVALID	INVALID Reserved EIP (1b) PROTOCOL IDENTIFIER							
1		ADDITIONAL ELEMENT STATUS DESCRIPTOR LENGTH (x - 1)							
2		Reserved EIIOE							

Table 66 Additional Element Status descriptor with the EIP set to one

3	ELEMENT INDEX
4	Protocol-specific information
X	

INVALID

INVALID bit one specifies that the contents of the protocol-specific information are invalid. An INVALID bit set to zero specifies that the contents of the protocol-specific information are valid.

EIP

EIP (element index present) bit set to one specifies that there is 'element index' in the Additional Element Status descriptor.

PROTOCOL IDENTIFIER

This field is defined in SPC-4 and specifies the protocol of the device being described by the Additional Element Status descriptor.

ADDITIONAL ELEMENT STATUS DESCRIPTOR LENGTH

This field specifies the number of bytes that follow in the Additional Element Status descriptor.

EIIOE

This field bit set to one indicates that the ELEMENT INDEX field is based on the position in the status descriptor list of the Enclosure Status diagnostic page including overall status elements (i.e., is the same as the CONNECTOR ELEMENT INDEX fields and the OTHER ELEMENT INDEX An EIIOE). This bit set to zero indicates that the ELEMENT INDEX field is based on the position in the status descriptor list of the Enclosure Status diagnostic page excluding overall status elements.

ELEMENT INDEX

This field specifies the index of the status element that this descriptor is describing.

Protocol-specific information bytes

These bytes contain information defined based on the PROTOCOL IDENTIFIER field. (See below)

4.2.10.2 Protocol-specific Information

The Protocol-specific information fields define the Additional Element Status descriptor protocolspecific information for Array Device Slot elements.

Table 67 Additional Element Status descriptor protocol-specific information for Array Device Slot elements for SAS with the EIP bit set to one

Bit	7	6	5	4	3	2	1	0					
Byte													
0		NUMBER OF PHY DESCRIPTORS											
1	DESCRIPTO	DESCRIPTOR TYPE (00b) Reserved NOT ALL PHYS											
2				Rese	erved								
3				DEVICE SL	ot number								
	•		P	hy descriptor	ist								
4		Phy descriptor (first)(see table)											
31	1												

x - 27	Phy descriptor (last)(see table)
x	

NUMBER OF PHY DESCRIPTORS

This field specifies how many PHY descriptors are in the PHY descriptor list.

DESCRIPTOR TYPE

This field is set to 00b

NOT ALL PHYS

The bit set to one specifies that all phys in the SAS device or SATA device may or may not be described. A NOT ALL PHYS bit set to zero specifies that all phys in the SAS device or SATA device are described.

DEVICE SLOT NUMBER

This field specifies the number of the device slot represented by the element.

4.2.10.3 PHY Descriptor

The PHY descriptor list contains a PHY descriptor for each PHY counted in the NUMBER OF PHY DESCRIPTORS filed.

Table 68 PHY descriptor

Bit	7	6	5	4	3	2	1	0			
Byte											
0	Reserved		DEVICE TYPE	•	Reserved						
1		Reserved									
2		Rese	erved		SSP INITIATOR PORT	STP INITIATOR PORT	SMP INITIATOR PORT	Reserved			
3	SATA PORT SELECTOR		Reserved		SSP TARGET PORT	STP TARGET PORT	SMP TARGET PORT	SATA DEVICE			
4				ATTACHED S	as address						
11											
12				SAS AD	DRESS						
19	-										
20		PHY IDENTIFIER									
21		Reserved									
27											

For a SATA drive in the device slot:

DEVICE TYPE, SSP INITIATOR PORT, STP INITIATOR PORT, SMP INITIATOR PORT, SSP TARGET PORT, STP TARGET PORT, SMP TARGET PORT is set to zero.

SATA PORT SELECTOR

This bit is set to one.

SATA DEVICE

This bit is set to one.

SAS ADDRESS

This field is set to the SAS address of the STP target port of the STP/SATA bridge.

PHY IDENTIFIER

This field is set to 00h or 01h.

ATTACHED SAS ADDRESS

This field contains the SAS address of the attached expander PHY.

4.2.11 Download Microcode Control Diagnostic Page (0Eh)²

Description

CLS SES firmware utilizes the functional definitions of Download Microcode Control diagnostic page to do firmware upgrade

Pages Contents

Table 69 Download Microcode Control Diagnostic Page

		I	Download Mic	rocode Contr	ol diagnostic p	age		
Bit Byte	7	6	5	4	3	2	1	0
				Page Head	er		1	I
0				PAGE C	ODE (0Eh)			
1			S	UBENCLOSURE	IDENTIFIER (00)h)		
2	(MSB)							
3				PAGE LEN	NGTH (n - 3)			(LSB)
4				EXPECTED GE	NERATION CODE			
7								
			Downloa	ad microcode	control data			
8				DOWNLOAD M	ICROCODE MOD	E		
9				Res	served			
10								
11				BUF	FER ID			
12	(MSB)							
				BUFFE	R OFFSET			(1 CD)
15								(LSB)
16	(MSB)							
•••				MICROCODE	IMAGE LENGTH			
19								(LSB)
20	(MSB)					22)		
			M	ICROCODE DAI	ГА LENGTH (m -	23)		
23								(LSB)
24				MICROC	ODE DATA			

² This feature is dependent on hardware, if there is no SRAM in hardware, this feature can't be supported, please contact the manufacturer to ensure whether the hardware has this dependency

m	
m+1	PAD (if needed)
n	

DOWNLOAD MICROCODE MODE

The following three (3) download microcode modes are supported:

- Mode 0x07: Download firmware with offset, save, and activate.
- Mode 0x0E: Download firmware with offset, save, and defer activation.
- Mode 0x0F: Activate deferred microcode.

BUFFER ID

This field should always be a 00h.

BUFFER OFFSET

This field specifies the current offset in bytes within the firmware image.

MICROCODE IMAGE LENGTH

This field specifies the total number of bytes in the firmware image.

MICROCODE DATA LENGTH

This field specifies the number of bytes in the MICROCODE DATA field.

MICROCODE DATA

This field specifies the data in the firmware image of this transaction.

4.2.12 Download Microcode Status Diagnostic Page (0Eh)³

Description

CLS SES firmware utilizes the functional definitions of Download Microcode Status diagnostic page to report firmware upgrade status.

Pages Contents

Table 70 Download Microcode Status Diagnostic Page

			Download Mic	rocode Status	diagnostic pa	age					
Bit Byte	7	6	5	4	3	2	1	0			
				Page Heade	r	I.					
0				PAGE CC	DE (0Eh)						
1		NUMBER OF SECONDARY SUBENCLOSURES (00h)									
2	(MSB)										
3				PAGE LEN	GTH (n - 3)			(1.00)			
				CENEDAT				(LSB)			
4				GENERAI	ION CODE						
7				<u> </u>							
			Download r	nicrocode sta	tus descripto	ſ					
8				Reserve	ed (00h)						
9			SL	JBENCLOSURE	IDENTIFIER (00	lh)					

³This feature is dependent on hardware, if there is no SRAM in hardware, this feature can't be supported, please contact the manufacturer to ensure whether the hardware has this dependency

10	SUBENCLOSURE DOWNLOAD MICROCODE STATUS	
11	SUBENCLOSURE DOWNLOAD MICROCODE ADDITIONAL STATUS (00h)	
12	(MSB)	
	SUBENCLOSURE DOWNLOAD MICROCODE MAXIMUM SIZE	
15		(LSB)
16	Reserved	
17		
18		
19	SUBENCLOSURE DOWNLOAD MICROCODE EXPECTED BUFFER ID	
20	(MSB)	
	SUBENCLOSURE DOWNLOAD MICROCODE EXPECTED BUFFER OFFSET	<i>(</i> ,)
23		(LSB)

SUBENCLOSURE DOWNLOAD MICROCODE STATUS

The status of download microcode operation, firmware may return one of the below values, depending on the result of the download operation:

- Codes indicating interim status:
 - 00h: No download microcode operation in progress.
 - 01h: Download microcode operation in progress.
- Codes indicating completion with no errors:
 - 10h: Download complete with no error, and firmware begins using new microcode after returning this page.
 - 11h: Download complete with no error, and firmware begins using new microcode after the next hard reset or power on.
 - 13h: Download complete with no error, firmware begins using new microcode after hard reset, power on, or processing a Download Microcode Control diagnostic page specifying to activate deferred microcode mode.
- Codes indicating completion with errors:
 - 80h: Error in one or more of the Download Microcode Control diagnostic page fields, new microcode discarded.
 - 81h: Image data CRC checksum error, new microcode discarded.
 - 82h: Download timeout
 - 84h: Internal error in the download microcode operation.
 - 85h: Processed a Download Microcode Control diagnostic page specifying to activate deferred microcode when there is no deferred microcode.

4.2.13 CLI Over SES Control Diagnostic Page (0x10h)

Description

The CLI Over SES Control Diagnostic Page is a vendor specific page and be used to send CLI defined commands string through data path. After CLI command being sent, SES firmware will invoke command service thread to implement the commands and store the results in local buffer.

The CLI Over SES Control Diagnostic Page could also specify length and offset to fetch the result string through data path.

Pages Contents

Table 71 CLI Over SES Control Diagnostic Page

	CLI Over SES Control Diagnostic Page (0x10)										
Bit	7	6	5	4	3	2	1	0			
Byte	Byte										

		Page Header	
0		PAGE CODE (10h)	
1		Reserved (00h	
2	(MSB)		
3	_	PAGE LENGTH (n-3)	(LSB)
		Command Data	
4	(MSB)		
5	_	Sequence ID	(LSB)
6	(MSB)		
7		CLI Command	(LSB)

Sequence ID

This field specifies the command sequence id, which is used to track the response data by host, the value is decided by host, host can generate this Sequence ID by ascending order for each command, for example, Sequence ID = 0 is for cmd 1, Sequence ID = 1 is for cmd 2, ...

CLI Command

This filed specifies CLI command string.

4.2.14 CLI Over SES Status Diagnostic Page (0x10h)

Description

The CLI Over SES Status Diagnostic Page is vendor specific page and be used to return command result from given offset with given length specified by the latest CLI Over SES Control Diagnostic Page.

Pages Contents

Table 72 CLI Over SES Status Diagnostic Page

		CI	I Over SES S	tatus Diagnos	stic Page (0x1	0)			
Bit	7	7 6	5	4	3	2	1	0	
Byte									
				Page Header	•				
0		PAGE CODE (10h)							
1				Reserv	red (00h				
2	(MSB)								
3				PAGE LEN	NGTH (n-3)			(LSB)	
				Raw Data					
4				Reserve	ed (00h)		Data Transfer Timeout	Data Transfer Complete	

5		Reserved (00h)	
6	(MSB)		
7	_	Sequenced ID	(LSB)
8	(MSB)		(100)
9		Command Despense Offset	
10		Command Response Offset	
11			(LSB)
12	(MSB)		
13		Data Size	(LSB)
14	(MSB)		× 7
n	1	Response Data from Expander Command Server	(LSB)

Date Transfer Timeout

This field specifies whether the transfer for the response data has been timeout. If it is set to one, it indicates this data transfer is invalid, timeout happens. If it is set to zero, it indicates this data transfer is valid, no timeout happens.

Data Transfer Complete

This field specifies whether the whole transfer for the response data has been completed. If it is set to one, it indicates this data transfer has been completed. If it is set to zero, it indicates this data transfer has not been completed, further status diagnostic page required to fetch response data.

Since some commands have long response data, which can't be completed by one-time transfer, it need multi status diagnostic page to fetch the following data

Please pay attention, if need further status diagnostic page, please sending the following status diagnostic page in 5 seconds, otherwise the following data will be dropped.

Sequence ID

This field specifies the command sequence id of the latest CLI Over SES Control Diagnostic Page

Command Response Offset.

This filed specifies the offset of this return data of the whole response data

Date Size

This field specifies the length of the field of "Response data from Expander cmdsvr"

Response data from Expander cmdsvr

This field specifies the response data

4.2.15 Timestamp Set Diagnostic Page (11h)

Description

The Timestamp Set Diagnostic Page requests the enclosure services processor to initialize the timestamp.

Pages Contents

Table 73 Timestamp Set Diagnostic Page

			Timestan	n <mark>p Set Diagn</mark> o	ostic Page					
Bit	7	6	5	4	3	2	1	0		
Byte	-									
				Page Header	•					
0				PAGE CO	DDE (11h)					
1		Reserved								
2	(MSB)									
3	-			PAGE LEN	IGTH (0Ah)			(LSE		
			Times	stamp Contro	l Field					
4	(MSB)			Time						
11				Time	stamp			(LSE		
12				Res	erved					
13										

Timestamp

This filed specifies the initial value of the timestamp. The timestamp should be the number of milliseconds synchronized from host. If the three high order bytes of the Timestamp field are greater than 0000F0h, the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

On successful completion of a Timestamp Set Diagnostic Page, the enclosure services processor shall establish a unit attention condition for the initiator port associated with every I_T nexus except the I_T nexus on which the Timestamp Set Diagnostic Page was received, with the additional sense code set to Timestamp Changed.

4.2.16 Timestamp Get Diagnostic Page (11h)

Description

The Timestamp Get Diagnostic Page requests that the enclosure services processor returns the value of the timestamp.

Pages Contents

Table 74 Timestamp Get Diagnostic Page

	Timestamp Get Diagnostic Page									
Bit	1	0								
Byte										
	II			Page Header						
0				PAGE CO	DE (11h)					
1		Reserved								
2	(MSB)									

3	PAGE LENGTH (0	
	Timestamp Status Field	(MSB)
4	Reserved (00000b)	Timestamp Origin
5	Reserved	
6	(MSB) Timestamp	
13	Timestanip	(LSB)

Timestamp Origin

This field specifies the origin of the timestamp.

000b: Timestamp initialized to zero at power-on or as the result of a hard reset. 010b: Timestamp initialized by the last Timestamp Set Diagnostic Page. Other values are to be considered reserved.

Timestamp

This field specifies the current value of timestamp. The timestamp shall increment by one for every millisecond that has elapsed since the timestamp was set. It shall remain in effect until a hard reset occurs or a Timestamp Set Diagnostic Page is processed.

4.2.17 VPD Control Diagnostic Page (12h)

Description

The VPD Control Diagnostic Page requests that the specified VPD content. The VPD Control Diagnostic Page is issued by the SEND DIAGNOSTIC command.

Pages Contents

Table 75 VPD Control Diagnostic Page

			VPD Co	ntrol Diagnos	tic Page			
Bit	7	6	5	4	3	2	1	0
Byte								
				Page Header	•			
0				PAGE CO	DDE (12h)			
1				Res	erved			
2	(MSB)							
3				PAGE LEN	GTH (n - 3)			(LSB
			V	PD Control Fie	eld			
4				Contr	ol Cmd			
n		Control Cmd Descriptor						

VPD Control Field

Table 76

Control Cmd	Comments	Control Cmd Descriptor
0x00	Read VPD	Read VPD Control Descriptor

Table 77 - VPD Control Field

Read VPD Control Descriptor

Table 78 Read VPD Control Descriptor

Bit	7	6	5	4	3	2	1	0				
Byte												
0		Control Cmd (0x00)										
1		VPD Type										
2				VPD) ID							

VPD Type

Multiple combinations of VPD Type and VPD ID have been allocated to specify the component where the target VPD resides. The enclosure services processor assigns vendor-specific VPD Type to be used as to locate VPD as follows: 0Eh: Assigned for VPD located in Midplane 07h: Assigned for VPD located in Canister 02h: Assigned for VPD located in Power Supply FFh: Assigned for all the VPDs in Enclosure

VPD ID

This field specifies the VPD of a given type. For Midplane VPD, this field is always 0 For Cansiter VPD, this field is 0 for Canister A VPD, 1 for Canister B VPD For Power Supply VPD, this filed is 0 for PS A VPD, 1 for PS B VPD For All VPD, this filed is always 0

4.2.18 VPD Status Diagnostic Page (12h)

Description

This function requests that the VPD of the specified component is retrieved followed by the SEND DIAGNOSTIC command with a Read VPD Control Diagnostic Page for a specific offset and length . A RECEIVE DIAGNOSTIC RESULT command is sent to retrieve the data.

Pages Contents

Table 79 VPD Status Diagnostic Page

			VPD St	atus Diagnos	tic Page			
Bit	7	6	5	4	3	2	1	0
Byte	_							
				Page Header				
0				PAGE CC	DE (12h)			
1				Rese	erved			
2	(MSB)							
3	-			PAGE LEN	GTH (n - 3)			(LSB
			v	PD Status Fie	ld			· · · ·
4				Complet	ion Code			
n				VPD Status	5 Descriptor			

VPD Type, VPD ID are defined in Read VPD Control Descriptor

VPD Status Field

Table 80 VPD Status Field

Completion Code	Comments	VPD Status Descriptor
0x00	Read VPD Successfully	Read VPD Status Descriptor
0x01	Read VPD Failed	

Read VPD Status Descriptor

Table 81 Read VPD Status Descriptor

Bit	7	6	5	4	3	2	1	0				
Byte												
0		VPD Type										
1		VPD ID										
n				VPD	Data							

Midplane VPD Data Format

Table 82 Midplane VPD Data Format

Field Name	Field Size (byte)	Field Description
Board Product Name	20	This field contains the Board Product Name
Board Part Number	20	This field contains the Board Part Number
Board Serial Number	20	This field contains the Board Serial Number
Board Hardware EC Level	8	This field contains the Board HardwareEC Level
Product_Name	20	This field contains the Product Name
Porduct_Part_Number	16	This field contains the Product Part Number
Product_Serial_Number	16	This field contains the Product Serial Number
Product Version	4	This field contains the Product Version

Canister VPD Data Format

Table 83 Canister VPD Data Format

Field Name	Field Size (byte)	Field Description
Board Product Name	20	This field contains the Board Product Name
Board Part Number	20	This field contains the Board Part Number
Board Serial Number	20	This field contains the Board Serial Number
Board Hardware EC Level	4	This field contains the Board HardwareEC Level

PSU VPD Data Format

Table 84 PSU VPD Data Format

Field Name	Field Size (byte)	Field Description
Manufacture Name	16	This field contains the Manufacturer Name
Manufacture PN	12	This field contains the Manufacturer Part Number
Manufacture SN	14	This field contains the Manufacturer Serial Number
Manufacture Hardware	4	This field contains the 4 bytes left-aligned ASCII of
Revision		Manufacturer Hardware Revision

4.2.19 Log Control Diagnostic Page (13h)

Description

Log Control Diagnostic Page is sent to Control Log Repository. The Log Control Diagnostic Page is issued by SEND DIAGNOSTIC command.

Pages Contents

Table 85 Log Control Diagnostic Page

	Log Control Diagnostic Page												
Bit	7	7 6 5 4 3 2 1 0											
Byte	-												
				Page Header	r								
0				PAGE CO	DDE (13h)								
1		Reserved											
2	(MSB)			DAGELEN									
3				PAGE LEI	NGTH (n-3)			(LSB)					
			L	Log Control Fie	eld								
4				Log Cor	ntrol Cmd								
5				Log Contro	l Descriptor								
n													

Log Control Cmd

This filed specifies the log control command of Log Control Diagnostic Page.

Table 86 Log Control Field

Log Control Cmd	Log Control Action	Log Control Descriptor
0x00	Get log info	Log Info Descriptor
0x01	Log Misc Control	Log Misc Control Descriptor
0x02	Get log entry	Get Log Entry Descriptor

4.2.19.1 Log Info Descriptor

Table 87 Log Info Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte										
0		LOG Repository ID								

LOG Repository ID⁴

This field specifies the ID of log repository 0x00: the log in ESCE A 0x01: the log in ESCE B

4.2.19.2 Log Misc Control Descriptor

Table 88 Log Misc Control Descriptor

Bit	7	6	5	4	3	2	1	0			
Byte											
0		LOG Repository ID									
1		Misc Control Data									

LOG Repository ID

This field has been defined in Log Info Descriptor

Misc Control Data

Table 89 Misc Control Data

Misc Control Data	Control Action
0x00	Check new log availability
0x01	Set all log entry to be read
0x02	Set all log entry to be unread
0x03	Clear log

4.2.19.3 Get Log Entry Descriptor

Table 90 Get Log Entry Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte										
0		1	1	LOG Repo	ository ID			1		
1	(MSB)	(MSB)								
				Start	Entry					
2		(LSB)								
3	(MSB)									

⁴ This feature is dependent on hardware, if there is no SRAM in hardware, this feature will only support local log operations, all peer log operations will not be supported and return invalid data, please contact the manufacturer to ensure whether the hardware has this dependency

	Entries Number
4	(LSB)

LOG Repository ID

This field has been defined in Log Info Descriptor

Start Entry

This field specifies the first log entry requested.

Entries Number

This field specifies the total number of log entries requested.

If both Start Entry and Entries Number are 0xffff, CLS SES firmware will do Log entry read by increasingly

CLS SES firmware is responsible for checking the boundary of Log Repository. If the combination of Start Entry and Entries number is invalid, the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

4.2.20 Log Status Diagnostic Page (13h)

Description

This function requests that the entries of Log Repository are retrieved. A RECEIVE DIAGNOSTIC RESULT command is sent to retrieve the entries of Log Repository.

Pages Contents

Table 91 Log Status Diagnostic Page

			Log St	atus Diagnos	tic Page									
Bit	7	7 6 5 4 3 2 1												
Byte														
	LL			Page Header	r	1								
0				PAGE CO	ODE (13h)									
1				Res	erved									
2	(MSB)													
3				PAGE LEN	IGTH (n - 3)			(LSB)						
	1		Log E	ntry Descript	or List									
4				Comple	tion Code									
5				Log Statu	s Descriptor									
n														

Completion Code

Table 92 Completion Code and Status Descriptor

Completion Code	Operation Status	Log Status Descriptor
0x00	Get log info successfully	Log Info Status Descriptor

0x01	Get log info failed	
0x02	Control Log successfully	Log Misc Control Status
0x03	Control Log failed	Descriptor
0x04	Get Log Entry successfully	Get Log Entry Status
0x05	Get Log Entry failed	Descriptor

Log Status Descriptor

Log Info Status Descriptor 4.2.20.1

Table 93 Log Info Status Descriptor

Bit	7	6	5	4	3	2	1	0			
Byte											
0		LOG Repository ID									
1		nv log level									
2	(MSB)			0							
3				Current en	try number			(LSB)			
4	(MSB)										
5				Available ei	ntry number			(LSB)			
6	(MSB)			Current Cuitia							
7				Current Critic	al log number			(LSB)			
8	(MSB)			Comment Marine							
9				Current warni	ng log number			(LSB)			
10	(MSB)			C 1 T C							
11				Current Info	log number			(LSB)			
12	(MSB)			=							
13				Eventio	g number			(LSB)			
14	(MSB)			Custom On such							
15				System Operat	ion log number			(LSB)			
16	(MSB)			D. J. J.							
17				Read out log	entry number			(LSB)			

LOG Repository ID This field has been defined in Log Info Descriptor

Log Misc Control Status Descriptor 4.2.20.2

Table 94 Log Misc Control Status Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte										
0		LOG Repository ID								
1				Complet	ion Code					
2				Additional Co	mpletion Code					

3

LOG Repository ID This field has been defined in Log Info Descriptor

Table 95 Completion Code and Additional Completion Code

Completion Code	Log Misc Control Cmd	Additional Completion Code
0x00	Check new log availability successfully	0x0000: no adding log
0x01	Check new log availability failed	0x0001~0xffff: adding log number
0x02	Set all log entry to be read successfully	Reserved
0x03	Set all log entry to be read failed	
0x04	Set all log entry to be unread successfully	
0x05	Set all log entry to be unread failed	
0x06	Clear log successfully	Reserved
0x07	Clear log failed	

Get Log Entry Status Descriptor 4.2.20.3

Table 96 Get Log Entry Status Descriptor

Bit	7	6	5	4	3	2	1	0
Byte	1							
0				LOG Rep	ository ID			
1	(MSB)							
				Start	Entry			
2								(LSB)
3	(MSB)							
				Entries	Number			
4								(LSB)
5				Requested E	ntry Number			
6								
7	(MSB)							
				Log Entry I	Descriptor 1			
22								(LSB)
m-15	(MSB)							
				Log Entry [Descriptor N			
m								(LSB)

LOG Repository ID

This field has been defined in Log Info Descriptor

Start Entry

This field specifies the start entry returned by Log Status Diagnostic Page

Entries Number

This field specifies the number of log entry returned by Log Status Diagnostic Page.

Requested Entry Number

This field specifes the number of log entry sent by Log Control Diagnostic Page

Please see the following subsections for more detailed information of Log Entry Descriptor.

4.2.20.3.1 Log Entry Descriptor

The Log Entry Descriptor contains a log entry descriptor for each log entry in Log Repository. The format of Log Entry Descriptor is defined as follow:

Table 97 Log Entry Descriptor

Bit	7	6	5	4	3	2	1	0				
Byte												
0	(MSB)		I			I	I	I				
1		Log Entry ID										
2				Log Entry V	ersion (10h)			(LSB)				
3				Log	Туре							
4	(MSB)											
5				Times	stamp							
6								(LSB)				
7								(LSD)				
8				Rese	erved							
9				Elemer	nt Type							
10				Eleme	ent ID							
11				Event	Туре							
12				Event A	ttributes							
13	(MSB)											
14	1			Event	: Data							
15	1							(LSB)				

Log Entry ID

An index value that's used for accessing log entries.

Log Entry Version

Version of log entry format, 10 h for this specification.

Log Type

Type of this log entry. 01h: Element event log 02h: System operation log

Timestamp

Firmware local running time (in second) when this entry was logged.

Element Type

Element Type Code, defined in 4.3 Element Definitions

Element ID

Unique number identifies an element of a given type.

Event Type

This filed specifies the event type.

Event Attributes

See to following subsection for more detailed information of Event Attributes.

Event Data

Three (3) bytes data field describe additional information of an event.

4.2.20.3.1.1 Event Attributes

Event Attributes of Log Entry Descriptor is defined as follow:

Table 98 Event Attributes

Bit	7	6	5	4	3	2	1	0
Byte								
Field	Event D	Pirection	Out of Ra	nge Type	Cleared Eve	ent Severity	Event S	Severity

Event Direction

00b: Assertion/Insertion/On 11b: De-Assertion/Removal/Off Other values are reserved.

Out of Range Type

00b: Not applicable 01b: Over high threshold. 10b: Under low threshold. Other values are reserved.

Cleared Event Severity

For sensors' de-assertion events. 00b: Not applicable 01b: Warning event cleared 10b: Critical event cleared. Other values are reserved.

Event Severity

00b: Info 01b: Warning 10: Critical Other values are reserved.

4.2.21 PHY Control Diagnostic Page (14h)

Description

The PHY Control Diagnostic Page is sent to enclosure services processor to control the specified PHY. The PHY Control Diagnostic Page is issued by SEND DIAGNOSTIC command.

Pages Contents

Table 99 PHY Control Diagnostic Page

	PHY Control Diagnostic Page									
Bit	7	6	5	4	3	2	1	0		
Byte	_									
	1			Page Header			1			
0	PAGE CODE (14h)									
1	Reserved									
2	(MSB)									
3	_			PAGE LEN	GTH (n-3h)			(LSB)		
			PHY C	ontrol Descrij	otor list			. ,		
4	Total PHY Number									
5	PHY Control Descriptor 1									
8										
n-3	PHY Control Descriptor N									
	-									
n	-									

Total PHY Number

This field specifies the total number of phy in expander

CLS SES firmware is responsible for checking the boundary of target expander PHYs. If total phy number is invalid, the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

PHY Control Descriptor is defined as below:

0	PHY Identifier			
1	Select			
2	PHY Control Command			
3	PHY Control Data			

Table 100 PHY Control Descriptor

Select

This bit specifies whether or not the enclosure services process should perform the control functions defined by the other bits in the PHY Control Descriptor

This bit set to one specifies enclosure services process should perform the control functions defined by the other bits in the PHY Control Descriptor. This bit set to zero specifies enclosure services process should not perform the control functions defined by the other bits in the PHY Control Descriptor

PHY Identifier

This field specifies the PHY of the target expander which PHY Control Diagnostic Page will control

CLS SES firmware is responsible for checking the boundary of target expander PHYs. If the PHY Identifier is invalid, the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN PARAMETER LIST.

PHY Control Command

This field specifies the control command for the specified PHY 0x00 PHY Status Control 0x01 PHY Information Get

PHY Control Data

this field specifies the control data which is used by control command

Table 101 PHY Control Command and Control Data

PHY Control Command	PHY Control Data	Descriptions
0x00	0x00: Disable	Disable the specified phy, stop the transaction on this phy
	0x01: Enable	Enable the specified phy, resume the transaction on this phy
0x01	Reserved	

4.2.22 PHY Status Diagnostic Page (14h)

Description

The PHY Status Diagnostic Page is returned by enclosure services processor to report the status of the specified phy. The PHY Status Diagnostic Page is returned by RECEIVE DIAGNOSTIC RESULT command.

Pages Contents

Table 102 PHY Status Diagnostic Page

			PHY St	atus Diagnost	ic Page			
Bit	7 6 5 4 3 2 1							0
Byte								
				Page Header				
0	PAGE CODE (14h)							
1	Reserved							
2	(MSB)							
3		PAGE LENGTH (n-3h) (LSE						
I			PHY S	tatus Descrip	tor list			

4	Total PHY Number
5	PHY Status Descriptor 1
	PHY Status Descriptor N
n	

Total PHY Number

This field specifies the total number of phy in expander

PHY Status Descriptor is defined as below:

Table 103 PHY Status Descriptor

0	PHY Identifier
1	PHY Status Format
2	PHY Status Data
N	

PHY Identifier

This field specifies the PHY of the target expander which PHY Status Diagnostic Page will report

PHY Status Format

This field specifies the format of the follow PHY Status Descriptor

Table 104 PHY Status Format

PHY Status Descriptor Format	PHY Status Descriptor Format Description
0x00	PHY Status Descriptor
0x01	PHY Information Descriptor
0xFF	Reserved Status Descriptor

4.2.22.1 PHY Status Descriptor

The PHY Status Descriptor List contains PHY Status Descriptors for each PHY of the target expander. The format of the PHY Status Descriptor is defined as follow:

Table 105 PHY Power Status Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0	PHY Status							

PHY Status 00h: Disabled. 01h: Enabled

4.2.22.2 PHY Information Descriptor

Bit	7	6	5	4	3	2	1	0
Byte	-							
0	(MSB)			DUN	- 			
1	-			PHY	Status			(LSB)
2				Link	Speed			
3				Res	erved			
4	(MSB)							
5				Invalid Dv	vord Count			
6								(LSB)
7								(LSD)
8	(MSB)							
9		Running Disparity Error Count						
10								(LSB)
11								(102)
12	(MSB)							
13			Lo	ss of Dword Syr	chronization C	ount		
14								(LSB)
15								
16	(MSB)							
17				PHY Reset P	roblem Count			
18								(LSB)
19								()

Table 106 PHY Information Descriptor

PHY Status

Table 107 PHY Status

PHY Status Code	Comments
0x00	PHY not ready
0x01	PHY ready

Link Speed

Table 108 Link Speed

Link Speed Code	Comments
0x00	1.5 Gb
0x01	3 Gb
0x02	6 Gb
0x03	12 Gb

Invalid Dword Count

This field specifies the number of invalid dwords that have been received outside of phy reset sequences. The count shall stop at the maximum value. The Invalid Dword Count field is set to 0 after power on.

Running Disparity Error Count

This field indicates the number of dwords containing running disparity errors that have been received outside of phy reset sequences. The count shall stop at the maximum value. The Running Disparity Error Count field is set to 0 after power on.

Loss of Dword Synchronization Count

This field indicates the number of times the phy has restarted the link reset sequence because it lost dword synchronization. The count shall stop at the maximum value. The Loss of Dword Synchronization Count field is set to 0 after power on.

PHY Reset Problem Count

This field indicates the number of times a phy reset problem occurred. The count shall stop at the maximum value. The PHY Reset Problem Count field is set to0 after power on.

4.2.22.3 Reserved Status Descriptor

Table 109 Reserved Status Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0		PHY Identifier						
1				0x	FF			

0xFF indicates this PHY is not selected in the corresponding Control Descriptor

4.2.23 Error Injection Control Diagnostic Page (15h)

Description

The Error Injection Control Diagnostic Page is sent to enclosure services processor to control the error injection. The Error injection Control Diagnostic Page is issued with SEND DIAGNOSTIC command.

The following table defines the page content of Error Injection Control Diagnostic Page

Table 110 Error Injection Control Diagnostic Page

	Error Injection Control Diagnostic Page								
Bit Byte	7	7 6 5 4 3 2 1 0							
	Page Header								
0		PAGE CODE (15h)							
1	Reserved								
2	(MSB)								

3	PAGE LENGTH (n - 3)
	(LSB)
	Error Injection Control Descriptor
4	Error Injection Control Cmd
n	Error Injection Control Cmd Descriptor

The following table defines the relationship between Control Cmd and the relative Control Cmd Descriptor

Table 111 Error Injection Control Cmd and Control Cmd Descriptor

Error Injection Control Cmd	Error Injection Control Cmd Descriptor	Comments
0x00	Configuration Descriptor	This cmd is used to get error injection configuration in Enclosure
0x01	Control Descriptor List	This cmd is used to inject error types into the elements defined by Table 124

Configuration Descriptor

The following table defines the format of Configuration Descriptor

Table 112 Configuration Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0				Rese	rved			

Control Descriptor List

The following table defines the format of Control Descriptor List

Table 113 Control Descriptor List

Bit	7	6	5	4	3	2	1	0		
Byte	-									
0				Control D	escriptor1	I				
	-									
				Control De	escriptor N					
М										

The Control Descriptor List contains control descriptors for each element described in the Configuration Status Descriptor defined by Table 123

The following table defines the format of Control Descriptor

Table 114 Control Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0		•		Overall Contr	ol Descriptor			
3								

4	Individual Control Descriptor 1
7	
M-3	Individual Control Descriptor N
М	

The overall control descriptor provides control for all the elements corresponding to the element type define in Table 124. The general format for the overall control descriptor is defined by Table 115.

The individual control descriptor contains an individual control for each of the possible elements identified by the ELEMENT NUMBERS field in the corresponding Configuration Status Descriptor by Table 122.

For example, if the ELEMENT NUMBERS field for one element is 4, the number of individual descriptor for this element shall be 4.

The individual control descriptors for the specific element shall be listed in the same order as ones in Enclosure Control diagnostic page.

Each control descriptor contains control information for the element. Table 115 defines the general format for the individual control element.

Table 115 Overall and Individual Control Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte	-									
0				COMMON	CONTROL					
	Select	Select Trigger Reserved								
1		•		Error Type Cor	ntrol Descriptor					
2										
3										

The COMMON CONTROL field contains Select and Trigger bit that can be used by any control element

Select

A SELECT bit set to one specifies that the firmware should perform the control functions defined by the other bits in the control descriptor. A SELECT bit set to zero specifies that the firmware shall ignore all other bits in the control descriptor.

Trigger

A Trigger bit set to one specifies that the error types whose bits are set to one, defined in Error Type Control Descriptor, should be triggered on. A Trigger bit set to zero specifies that the error types whose bits are set to one, defined in Error Type Control Descriptor, should be triggered off.

Error Type Control Descriptor

The Error Type Control Descriptor is defined separately for each element type in Table 124 this field specifies the error types for this element should be carried out by this error injection control or not.

The bit in Error Type Control Descriptor set to one specifies that the corresponding error type shall be carried out by this error injection control. The bit in Error Type Control Descriptor set to zero has no effect

The following table defines the Power Supply Error Type Control Descriptor

Table 116 Power Supply Error Type Control Descriptor

Bit Byte	7	6	5	4	3	2	1	0		
0				COMMON	CONTROL					
1	RQST DC Over Voltage	RQST DC Under Voltage	RQST DC Over Current	RQST AC Fail	RQST DC Fail		Reserved			
2		Reserved								
3				Rese	rved					

The following table defines the Cooling Error Type Control Descriptor

Table 117 Cooling Error Type Control Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte										
0				COMMON	CONTROL					
1	RQST Fail		Reserved							
2				Rese	rved					
3				Rese	erved					

The following table defines the Temperature Error Type Control Descriptor

Table 118 Temperature Error Type Control Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte										
0		•		COMMON CO	ONTROL	L.				
1	RQST Over Temperature FailRQST Under Temperature FailRQST Under Temperature FailRQST Under Temperature WarningReserved									
2		Reserved								
3				Reserv	ed					

The following table defines the Voltage Error Type Control Descriptor

Table 119 Voltage Error Type Control Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte	-									
0				COMMON	CONTROL					
1	RQST Over Voltage Fail	RQST Over Voltage Warning	RQST Under Voltage Fail	RQST Under Voltage Warning	Reserved					
2		Reserved								
3				Rese	erved					

The following table defines the Current Error Type Control Descriptor

Table 120 Current Error Type Control Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte										
0				COMMON	CONTROL					
1	RQST Over Current Fail	RQST Over Current Warning		Reserved						
2				Rese	rved					
3				Rese	rved					

4.2.24 Error injection Status Diagnostic Page (15h)

Description

The Error Injection Status Diagnostic Page is sent to enclosure services processor to get error injection status. The Error Injection Status Diagnostic Page is issued with RECEIVE DIAGNOSTIC RESULT command.

The following table defines the page content of the Error Injection Status Diagnostic Page

Table 121 Error Injection Status Diagnostic Page

			Error Injecti	ion Status Dia	gnostic Page			
Bit	7	6	5	4	3	2	1	0
Byte								
				Page Header				
0				PAGE CC	DE (15h)			
1				Rese	erved			
2	(MSB)							
3				PAGE LEN	GTH (n - 3)			(LSE
	•		Error Inje	ection Status	Descriptor			
4				Error Injection (Completion Cod	e		
n				Error Injection S	Status Descripto	r		

The following table defines the relationship between Completion Code and Status Descriptor

Table 122 Error Injection Completion Code and Status Descriptor

Completion Code	Comments	Status Descriptor
0x00	Get Configuration Status successfully	Configuration Status Descriptor
0x01	Get Configuration Status failed	
0x02	Error Injection Control successfully	Status Descriptor List
0x03	Error Injection Control failed	

Configuration Status Descriptor

The following table defines the format of Configuration Status Descriptor

Table 123 Configuration Status Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte	-									
0				Element	Type 1					
1				Element	Numbers					
N-1		Element Type N								
N				Element	Numbers					

Element Type

The Element Type field specifies the element type being described in the Configuration Status Descriptor. The following table defines the detailed element type information.

Table 124 Element Type List

Element Type Code	Element Type Name
0x02	Power Supply
0x03	Cooling
0x04	Temperature
0x12	Voltage
0x13	Current

Element Numbers

The Element Numbers field specifies the number of elements for the element type described in Element Type field.

Status Descriptor List

The following table defines the format of Status Descriptor List

Table 125 Status Descriptor List

Bit	7	6	5	4	3	2	1	0
Byte	-							
0			1	Status De	scriptor 1	1	1	
				Status De	scriptor N			
м								

The Status Descriptor List contains status descriptors for each element described in the Configuration Status Descriptor defined by Table 123.

The following table defines the format of Status Descriptor

Table 126 Status Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0				Overall Statu	is Descriptor		L	

3	
4	Individual Status Descriptor 1
7	
X-3	Individual Status Descriptor N
X	

The overall status descriptor provides summary status for all the elements corresponding to the element type defined in Table 124.

The following table defines the general format for the overall status element.

Table 127 Overall Status Descriptor

Bit	7	6 5	4	3	2	1	0	
Byte								
0				Commo	n Status			
-		Status				Reserved		
1				Rese	rved			
2								
3								

The COMMON STATUS field contains Status bit that shall be returned by any status descriptor.

Status

The status field specifies the summary error injection status for the elements described in this descriptor.

The following table defines the Status field.

Table 128 Status Definition

Status Code	Status Description
0x00	Error Injection not Running
0x01	Error Injection Running

The individual status descriptor contains an individual status element for each elements identified by the ELEMENT NUMBERS field in the corresponding Error Injection Configuration Status Descriptor by Table 124.

For example, if the ELEMENT NUMBERS field for one element is 4, the number of individual descriptor for this element shall be 4,

The individual status descriptors for the specific element shall be listed in the same order as ones in Enclosure Status diagnostic page.

Each individual status descriptor contains status information for the element.

The following table defines the general format for the individual status element.

Table 129 Individual Status Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0				COMMON	STATUS			

	Status	Reserved
1		Error Type Status Descriptor
2		
3		

The COMMON STATUS field contains Status bit that shall be returned by any status descriptor.

Status

The status field specifies the error injection status for the element described in this descriptor, which is defined in Table 124

Error Type Status Descriptor

The Error Type Status Descriptor is defined separately for each element type in Table 124 this field specifies the status of error types for this element.

The bit in Error Type Status Descriptor set to one specifies that the corresponding error type has been carried out by firmware. The bit in Error Type Status Descriptor set to zero specifies that the corresponding error type hasn't been carried out by firmware.

The following table defines the Power Supply Error Type Status Descriptor

Table 130 Power Supply Error Type Status Descriptor

Bit	7	6	5	4	3	2	1	0	
Byte									
0				COMMON	STATUS				
1	DC Over Voltage	DC Under Voltage	DC Over Current	AC Fail	DC Fail		Reserved		
2				Rese	rved				
3		Reserved							

The following table defines the Cooling Error Type Status Descriptor

Table 131 Cooling Error Type Status Descriptor

Bit	7	6	5	4	3	2	1	0			
Byte											
0				COMMON	I STATUS						
1	Fail				Reserved						
2			Reserved								
3			Reserved								

The following table defines the Temperature Error Type Status Descriptor

Table 132 Temperature Error Type Status Descriptor

Bit	7	6	5	4	3	2	1	0	
Byte	-								
0		COMMON STATUS							
1	Over Temperature Fail	Over Temperature Warning	Under Temperature Fail	Under Temperature Warning	Reserved				
2	Reserved								

3	Reserved

The following table defines the Voltage Error Type Status Descriptor

Table 133 Voltage Error Type Status Descriptor

Bit	7	6	5	4	3	2	1	0	
Byte									
0		COMMON STATUS							
1	Over Voltage Fail	Over Voltage Warning	Under Voltage Fail	Under Voltage Warning		Rese	erved		
2		Reserved							
3		Reserved							

The following table defines the Current Error Type Status Descriptor

Table 134 Current Error Type Status Descriptor

Bit	7	6	5	4	3	2	1	0	
Byte	-								
0		COMMON STATUS							
1	Over Current Fail	Over Current Warning	Reserved						
2		Reserved							
3		Reserved							

4.2.25 State Preservation Control Diagnostic Page (16h)

Description

The State Preservation Control Diagnostic Page is sent to enclosure services process to request performing Stave Save, getting saved content from a specific flash buffer, getting information of State Preservation and clearing the saved content in a specific flash buffer. The State Preservation Control Diagnostic Page is issued with SEND DIAGNOSTIC command.

Pages Contents

Table 135 State Preservation Control Diagnostic Page

State Preservation Control Diagnostic Page									
Bit	7	6	5	4	3	2	1	0	
Byte	-								
Page Header									
0		PAGE CODE (16h)							
1		Reserved							
2	(MSB)								
3				PAGE LEN	GTH (n - 3)			(LSB)	
			State Prese	ervation Contr	ol Descriptor				
4		State Preservation Cmd							
5		State Preservation Control Descriptor							
n	1								

State Preservation Cmd

Table 136 State Preservation Cmd and Control Descriptor

State Preservation Cmd	Action	Control Descriptor
0x00	Perform State Preservation	Perform State Preservation Control Descriptor
0x01	Get saved content of State Preservation from a specific flash buffer	Get State Preservation Content Control Descriptor
0x02	Get information of State Preservation	Get State Preservation Info Control Descriptor
0x03	Clear saved content of State Preservation in a specific flash buffer	Clear State Preservation Content Control Descriptor

Control Descriptor

Perform State Preservation Control Descriptor

Table 137 Perform State Preservation Control Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0	Reserved							

Please note the State Preservation will not be performed if no free flash buffer available. It's application client's responsibility to maintain the availability of flash buffer.

Get State Preservation Content Control Descriptor

Bit	7	6	5	4	3	2	1	0		
Byte										
0		Buffer ID								
1	(MSB)									
2				Buffer	Offset			(LSB)		
3								(LSD)		
4										
5	(MSB)									
6				Ler	igth			(LSB)		
7								(LSD)		
8	1									

Table 138 Get State Preservation Content Control Descriptor

Buffer ID

This field specifies the flash buffer ID from which the saved content will be retrieved. Now it supports 3 buffers which value shall be 0~2.

Buffer Offset

This field specifies the byte offset within the specified flash buffer, which is the beginning data shall be returned to application client side.

Buffer Length

This field specifies the number of bytes will be returned to application client side via the Data-In Buffer. The amount of data that will be transferred shall not exceed this length or cross-border the end of the valid State Preservation size which is indicated by the Buffer N Valid Length within Get State Preservation Info Description, whichever comes firstly.

Get State Preservation Info Control Descriptor

Table 139 Get State Preservation Info Control Descriptor

Bit	7	6	5	4	3	2	1	0	
Byte									
0		Reserved							

Clear State Preservation Content Control Descriptor

Table 140 Clear State Preservation Content Control Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0	Buffer ID							

Buffer ID

This fiels is defined is defined the specific flash buffer 0~2.

CLS SES firmware is responsible for checking the boundary of target expander Buffer ID and Buffer Offset. If they are invalid, the command shall be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST, and the additional sense code set to INVALID FIELD IN PARAMETER LIST

4.2.26 State Preservation Status Diagnostic Page (16h)

Description

The State Preservation Status Diagnostic Page is sent to enclosure services process to get the information of Stave Save, content saved by Stave Save function and the result of the Send Diagnostic command for Stave Save page code. The State Preservation Status Diagnostic Page is issued with RECEIVE DIAGNOSTIC RESULTS command.

Pages Contents

Table 141 State Preservation Status Diagnostic Page

		S	State Preserva	ation Status D	iagnostic Pag	e		
Bit	7	6	5	4	3	2	1	0
Byte	_							
				Page Heade	ſ			
0				PAGE CO	DDE (16h)			
1				Res	erved			
2	(MSB)							
3	_			PAGE LEN	GTH (n - 3)			(LSB)
			State P	reservation D	escriptor			,
4				Comple	tion Code			
5			St	ate Preservatio	n Status Descrip	otor		
n	-							

Completion Code

Table 142 Completion Code and Status Descriptor

Completion Code	State Preservation Cmd Status	State Preservation Status Descriptor		
0x00	Perform State Preservation successfully	Perform State Preservation Status Descriptor		
0x01	Perform State Preservation failed			
0x02	Get content of State Preservation successfully	Get State Preservation Content Staus Descriptor		
0x03	Get content of State Preservation failed			
0x04	Get information of State Preservation successfully	Get State Preservation Information Staus Descriptor		
0x05	Get information of State Preservation failed			
0x06	Clear content of State Preservation successfully	Clear State Preservation Staus Content Descriptor		

0x07	Clear content of State Preservation	
	failed	

Perform State Preservation Status Descriptor

Table 143 Perform State Preservation Status Descriptor

Bit	7	6	5	4	3	2	1	0	
Byte									
0		Reserved							

Get State Preservation Content Status Descriptor

Table 144 Get State Preservation Content Status Descriptor

Bit	7	6	5	4	3	2	1	0			
Byte											
0				Buffe	er ID						
1	(MSB)										
2		Buffer Offset									
3											
4											
5	(MSB)										
6				Returne	d Length			(1 CD)			
7								(LSB)			
8											
9	(MSB)										
10				Requeste	ed Length			(1 CD)			
11								(LSB)			
12											
13			ç	State Preservatio	n Status Conte	nt					
N											

Get State Preservation Info Status Descriptor

Table 145 Get State Preservation Info Status Descriptor

Bit	7	6	5	4	3	2	1	0			
Byte											
0	(MSB)	(MSB)									
1		Total Buffer Number									
2		(LS									
3											
4	(MSB)										
5				Buffer	0 Size						

6			(LSB)
7	-		
8	(MSB)		
9		Buffer 0 Start Address	(,
10	-		(LSB)
11	-		
12	(MSB)		
13		Buffer 0 Valid Length	<i></i>
14	-		(LSB)
15	-		
16	(MSB)		
17		Buffer 0 Status	(1.00)
18	_		(LSB)
19	_		
	(MSB)		
		Buufer N Size	(LSB)
			(L3D)
	(MSB)		
		Buffer N Start Address	(LSB)
			(150)
	(MSB)		
		Buffer N Valid Length	(LSB)
			(100)
	(MSB)		
		Buffer N Status	(LSB)
			(200)
n			

Total Buffer Number

This field specifies the total number of the flash buffers.

Buffer Size

This field specifies the total size of each flash buffer. Each, flash buffer has the same size.

Buffer N Status

This field specifies the status of buffer N. The value 0 indicates the buffer is empty, in which the content is invalid. The value 1 indicates the content in the buffer is valid.

Buffer N Start Address

This field specifies the start address of buffer N.

Buffer N Valid Length

This field specifies the valid length of the content in buffer N.

Clear State Preservation Status Descriptor

Table 146 Clear State Preservation Status Descriptor

Bit	7	6	5	4	3	2	1	0
Byte								
0				Rese	erved			

4.3 Element Definitions

The table below is a list of SES element types that are designed in CLS SES firmware implementation:

Element Type Code	Element Name	Threshold	Number of Possible Elements
17h	Array Device Slot	none	N/A *
02h	Power Supply	none	N/A *
03h	Cooling	none	N/A *
04h	Temperature Sensor	temperature	N/A *
07h	ESCE	none	N/A *
0Eh	Enclosure	none	N/A *
12h	Voltage Sensor	% voltage	N/A *
13h	Current Sensor	% current	N/A *
18h	SAS Expander	none	N/A *
19h	SAS Connectors	none	N/A *

Table 147 SES Element Types Summary

*: NUMBER OF POSSIBLE ELEMENTS is platform-specific data, each platform will have its own configuration

Please refer to SES-3 spec section 7.2 for field format definitions common to all element types. Please refer to SES-3 spec section 7.3 for field format definitions that differ for different element types.

4.3.1 COMMON CONTROL Element Format

Table 148 Common Control Element Format

Bit	7	6	5	4	3	2	1	0
Byte								

0		COMMON CONTROL									
	SELECT	SELECT PRDFAIL DISABLE RST SWAP Reserved									
1			Elem	ent Type specifi	c control information						
2											
3											

SELECT

A SELECT bit set to one specifies that the enclosure services process should perform the control functions defined by the other bits in the control element. A SELECT bit set to zero specifies that the enclosure services process shall ignore all other bits in the control element.

4.3.2 COMMON STATUS Element format

Bit	7	6	5	4	3	2	1	0			
Byte											
0		COMMON STATUS									
	Reserved PRDFAIL DISABLED SWAP ELEMENT STATUS CODE										
1			Elem	ent type specifi	c status inform	ation					
2											
3											

Table 149 Common Status

The ELEMENT STATUS CODE field is defined in the following table.

Table 150 Element Status Code

Status Code	Name	Condition
1h	Ok	Element is installed and no error conditions are known
2h	Critical	Element Critical condition is detected
3h	Noncritical	Element Noncritical condition is detected
5h	Not installed	Element is not installed
6h	Unknown	Element status is not available
7h	Not available	Element installed, no known errors, but the element has
		not been turned on or set into operation

4.3.3 Array Device Slot Element (17h)

The Array Device Slot element manages a device slot (e.g., containing a SCSI device such as a disk drive) in the enclosure.

4.3.3.1 Array Device Slot Control Element

The Array Device Slot control element is defined as follow:

Table 151 Array Device Slot Control Element

Array Device Slot Control Element

Bit Byte	7	6	5	4	3	2	1	0
0		COMMON CONTROL						
1	RQST OK	RQST RSVD DEVICE	RQST HOT SPARE	RQST CONS CHECK	RQST IN CRIT ARRAY	RQST IN FAILED ARRAY	RQST REBUILD / REMAP	RQST R / R ABORT
2	RQST ACTIVE	DO NOT REMOVE	Reserved	RQST MISSING	RQST INSERT	RQST REMOVE	RQST IDENT	Reserved
3	Rese	erved	RQST FAULT	DEVICE OFF	ENABLE BYP A	ENABLE BYP B	Rese	erved

RQST IDENT

A RQST IDENT (request identify) bit set to one specifies that the device slot be identified by a visual indication. A RQST IDENT bit set to zero specifies that the device slot not identified by a visual indication.

RQST FAULT

A RQST FAULT bit set to one specifies that the device slot be identified by a visual indication that a fault is present in the device. A RQST FAULT bit set to zero specifies that the fault indication shall be cleared if the indication is not also being set by the device or the enclosure services process.

DEVICE OFF

A DEVICE OFF bit set to one specifies that the device slot be turned off. A DEVICE OFF bit set to zero specifies that the device slot may be turned on if all other prerequisites are met

Other fields are not supported.

It should be noted that when zoning is enabled, if the SELECT bit in COMMON CONTROL byte is set to one for any device attached to the PHY for which the SAS initiator port performing the SEND DIAGNOSTIC command does not have access according to the zone permission table, then the SEND DIAGNOSTIC command with be terminated with a CHECK CONDITION status. The sense key is set to ILLEGAL REQUEST, and the additional sense code is set to INVALID FIELD IN PARAMETER LIST.

4.3.3.2 Array Device Slot Status Element

The Array Device Slot status element is defined as follow:

	Array Device Slot Status Element										
Bit	7 6 5 4 3 2 1 0										
Byte	_										
0		COMMON STATUS									
1	ОК	RSVD DEVICE	HOT SPARE	CONS CHK	IN CRIT ARRAY	IN FAILED ARRAY	REBUILD / REMAP	R / R ABORT			
2	APP CLIENT BYPASSED A	DO NOT REMOVE	ENCLOSURE BYPASSED A	ENCLOSURE BYPASSED B	READY TO INSERT	RMV	IDENT	REPORT			
3	APP CLIENT BYPASSED B	FAULT SENSED	FAULT REQSTD	DEVICE OFF	BYPASSED A	BYPASSED B	DEVICE BYPASSED A	DEVICE BYPASSED B			

Table 152 Array Device Slot Status Element

IDENT

A IDENT bit set to one indicate that the RQST IDENT control bit is set and the device is providing a visual indication of its location. The IDENT bit is cleared when the RQST IDENT control bit is cleared.

FAULT REQSTD

A FAULT REQSTD bit is set to one indicate that the RQST FAULT control bit has requested that the device slot be identified by a visual fault indication. The FAULT REQSTD bit is cleared when the RQST FAULT control bit is cleared.

DEVICE OFF

A DEVICE OFF bit is set to one indicate that the device is turned off. This bit is cleared to indicate that the device is turned on.

Status Code	Name	Condition
1h	Ok	Drive is installed and no error conditions are known
2h	Critical	Drive over temperature is detected
5h	Not installed	Drive is not installed
6h	Unknown	Drive is not accessible (PHY disabled)
7h	Not available	Drive is installed but PHYRDY lost
8h	No Access Allowed	Zoning related, access deny

Table 153 ELEMENT STATUS CODE for Device Slot

Other fields are not used.

It should be noted that when zoning is enabled on an expander device, the enclosure services process sets the ELEMENT STATUS CODE field to 8h (i.e., No Access Allowed) for each element that represents a device attached to the expander PHY for which the SAS initiator port performing the RECEIVE DIAGNOSTIC RESULTS command does not have access according to the zone permission table.

4.3.4 Power Supply Element (02h)

The Power Supply element manages a power supply in the enclosure.

4.3.4.1 Power Supply Control Element

The Power Supply control element is defined as follow:

Table 154 Power Supply Control Element	Table 154	Power	Supply	Control	Element
--	-----------	-------	--------	---------	---------

	Power Supply Control Element									
Bit	7	6	6 5 4 3 2 1 0							
Byte										
0		COMMON CONTROL								
1	RQST IDENT		Reserved							
2		Reserved								
3	Reserved	RQST FAIL	RQST ON			Reserved				

RQST IDENT

This bit set to one specifies that the enclosure services process identify the PSU by a visual indication. A RQST IDENT bit set to zero specifies that the enclosure services process not identify

the PSU by a visual indication

RQST FAIL

This bit set to one will turn on the selected PS fault LED. This bit set to zero will turn off the selected PS fault LED unless the enclosure services process is itself detecting a failure in the PS.

RQST ON

This bit set to one specifies that the selected PS be turned on or remain on. When the RQST ON bit is set to zero, the power supply is requested to turn off or remain off.

4.3.4.2 Power Supply Status Element

The Power Supply status element is defined as follow:

Table 155 Power Supply Status Element

			Powe	r Supply S	tatus Element	:				
Bit Byte	7	6 5 4 3 2 1 0								
0		COMMON STATUS								
1	IDENT		Reserved							
2		Reserved DC OVER DC UNDER DC OVER Reserved VOLTAGE VOLTAGE CURRENT								
3	HOT SWAP	FAIL	RQSTED ON	OFF	OVERTMP FAIL	TEMP WARN	AC FAIL	DC FAIL		

IDENT

An IDENT bit set to one indicates that the enclosure services process is identifying the PSU by a visual indication because the RQST IDENT bit was set to one in the control element. An IDENT bit set to zero indicates that the enclosure services process is not identifying the PSU by a visual indication based on the RQST IDENT bit in the control element.

DC OVER VOLTAGE

A DC OVERVOLTAGE bit set to one indicates an overvoltage condition has been detected at the power supply output. A DC OVERVOLTAGE bit set to zero indicates that the RQST FAIL control bit has been set to one and then set to zero or that a power on has occurred.

DC UNDER VOLTAGE

A DC UNDERVOLTAGE bit set to one indicates an under voltage condition has been detected at the power supply output. A DC UNDERVOLTAGE bit set to zero indicates that the RQST FAIL control bit has been set to one and then set to zero or that a power on has occurred.

DC OVERCURRENT

A DC OVERCURRENT bit set to one indicates an over current condition has been detected at the power supply output. The DC OVERCURRENT bit set to zero indicates that the RQST FAIL control bit has been set to one and then set to zero or that a power on has occurred.

HOT SWAP

This bit set to one indicates that the element may be replaced without removing power from the enclosure that contains the element.

FAIL

A FAIL bit set to one indicates that the enclosure services process is identifying the element with a visual failure indication based on the RQST FAIL bit in the control element or its own detection of a failure. When this bit set to zero indicated the enclosure services process is not identifying the element with a visual failure indication based on the RQST FAIL bit in the control element or its own detection of a failure. In CLS SES firmware implementation, this bit reflects the current state of PS Fault LED.

RQSTED ON

This bit set to one indicates that the power supply has been manually turned on or has been requested to turn on by setting the RQST ON control bit to one. A RQSTED ON bit set to zero indicates that the RQST ON control bit has been set to zero.

OFF

An OFF bit set to zero indicates the power supply is providing its specified output.

OVERTMP FAIL

This over temperature failure bit set to one indicates the power supply has detected a temperature above the safe operating temperature range.

TEMP WARN

This over temperature warning bit set to one indicates the power supply has detected a temperature within the safe operating temperature range, but above the normal operating temperature range.

AC FAIL

This bit set to one indicates that the power supply is not receiving the specified AC power. This bit set to zero indicates that normal AC power is being received.

DC FAIL

This bit set to one indicates that the power supply is unable to supply the specified DC power. This bit set to zero indicates that normal DC power is being provided.

ELEMENT STATUS CODE In COMMON STATUS, this field is used to indicate PS element presence and failure status, defined as follow:

Table 156 ELEMENT STATUS CODE for PS

Status Code	Name	Condition			
1h	Ok	PS is installed and no error conditions are known			
2h	Critical	All the PS Alert/failure conditions except "TEMP			
		WARN" and "AC FAIL"			
3h	Non-critical	TEMP WARN or AC FAIL			
5h	Not installed	PS is not installed			
6h	Unknown	PS is not accessible (I2C access error)			

4.3.5 Cooling Element (03h)

The Cooling element manages a fan, blower, or other cooling mechanism.

4.3.5.1 Cooling Control Element

The Cooling control element is defined as follow:

Table 157 Cooling Control Element

	Cooling Control Element										
Bit	7	7 6 5 4 3 2 1 0									
Byte											
0		COMMON CONTROL									
1	RQST IDENT		Reserved								
2	Reserved										
3	Reserved	RQST FAIL	RQST ON	Reserved	RQST MANUAL	REQUE	STED SPEE	D CODE			

RQST MANUAL

This bit set to one specifies that the cooling control mode be set to external mode in which fan speed is controlled by host. When this bit set to zero specifies that the cooling control mode be set to internal mode in which fan speed is controlled by CLS SES firmware.

REQUESTED SPEED CODE

This field specifies the requested speed or rate of cooling fans. 000b means leave fan at current speed while 001b to 111b correspond to 7 fan speed levels. If cooling control mode is in internal mode at the time of receiving this element and RQST CTRL bit of this element is not set to one, then CLS SES firmware ignores the request and the INVOP bit is set.

4.3.5.2 Cooling Status Element

The Cooling status element is defined as follow:

Table 158 Cooling Status Element

			Cooli	ng Status E	lement				
Bit Byte	7	6	5	4	3	2	1	0	
0		COMMON STATUS							
1	IDENT		Rese	erved	(MSB)				
2			ACTUAL FAN SPEED						
3	HOT SWAP	FAIL	RQSTED ON	OFF	FAN MODE	ACTU	JAL SPEED	CODE	

ACTUAL FAN SPEED

An ACTUAL FAN SPEED field indicates the actual fan speed in revolutions per minute (rpm) when multiplied by a factor of 10 (e.g., 000h indicates 0 rpm and 7FFh indicates 20 470 rpm).

FAIL

A FAIL bit set to one indicates that the enclosure services process is identifying the element with a visual failure indication based on its own detection of a failure. When this bit set to zero indicated the enclosure services process is not identifying the element with a visual failure indication based on its own detection of a failure.

FAN MODE

This bit indicates current cooling control mode, an one indicates it is in external control mode while a zero indicates it is in internal control mode.

ACTUAL SPEED CODE

This field indicates the actual speed or rate of cooling of the cooling mechanism, 000b indicates cooling fans are stopped while 001b to 111b correspond to 7 fan speed levels.

ELEMENT STATUS CODE

In COMMON STATUS, this field is used to indicate Cooling element presence and failure status, defined as follow:

Status Code	Name	Condition			
1h	Ok	The fan is installed and no error conditions are			
		known			
2h	Critical	Multiple fan failure			
3h	Non-critical	Single fan failure			
5h	Not installed	The PS is not installed			
6h	Unknown	The fan is not accessible (I2C access error)			

Table 159 ELEMENT STATUS CODE for Cooling

4.3.6 Temperature Sensor Element (04h)

The Temperature Sensor element manages a temperature sensor.

4.3.6.1 Temperature Sensor Control Element

The Temperature Sensor control element is defined as follow:

	Temperature Sensor Control Element										
Bit Byte	7	6	5	4	3	2	1	0			
0	COMMON CONTROL										
1	RQST IDENT	RQST FAIL	Reserved								
2	Reserved										
3											

4.3.6.2 Temperature Sensor Status Element

The Temperature Sensor status element is defined as follow:

Table 161	Temperature	Sensor	Status	Element
	remperature	0011301	olulus	LIGHTON

	Temperature Sensor Status Element									
Bit	7	6	5 5 4 3 2 1 0							
Byte										
0				CO	MMON STATUS	5				
1	IDENT	FAIL		Reserved						
2				TE	MPERATURE					
3		Reserved			OT FAILURE	OT WARNING	UT FAILURE	UT WARNING		

TEMPERATURE

This field indicates the temperature at the sensor in degrees Celsius, offset by +20 degrees. The range of the value expresses a temperature between -19 and +235 degrees Celsius. A value of 00h is reserved.

OT FAILURE

This bit set to one indicates that the temperature is above the safe operating temperature range or higher than the value indicated by the high critical threshold.

OT WARNING

This bit set to one indicates that the temperature is above the normal operating temperature range or higher than the value indicated by the high warning threshold.

UT FAILURE

This bit set to one indicates that the temperature is below the safe operating temperature range or lowers than the value indicated by the low critical threshold.

UT WARNING

This bit set to one indicates that the temperature is below the normal operating temperature

range or lowers than the value indicated by the low warning threshold.

ELEMENT STATUS CODE In COMMON STATUS, this field is used to indicate Temperature Sensor element presence and failure status, defined as follow:

Table 162 ELEMENT STATUS CODE for Temper	ature Sensor
--	--------------

Status Code	Name	Condition
1h	Ok	The sensor is installed and no error conditions are known
2h	Critical	OT or UT failure condition is detected
3h	Non-critical	OT or UT warning condition is detected
5h	Not installed	The sensor is not installed
6h	Unknown	The sensor is not accessible (I2C access error)

Other fields are not used.

4.3.7 Enclosure Services Controller Electronics Element (07h)

The Enclosure Services Controller Electronics (ESCE) element manages the processor circuitry used by the enclosure services process, as known as the SES firmware.

4.3.7.1 ESCE Control Element

The ESCE control element is defined as follow:

Table 163 ESCE Control Element

		Enclosure	Services Co	ntroller Electr	onics Control	Element		
Bit	7	6	5	4	3	2	1	0
Byte								
0				COMMON	CONTROL			
1	RQST IDENT	RQST FAIL	Reserved					
2				Reserved				SELECT
								ELEMENT
3				Rese	rved			

RQST IDENT

This bit set to one specifies that the enclosure services process turn on Canister Identify LED. This bit set to zero specifies that the enclosure services process turn off Canister Identify LED.

RQST FAIL

This bit set to one specifies that the enclosure services process turn on Canister Fault LED. This bit set to zero specifies that the enclosure services process turn off Canister Fault LED unless the enclosure services process is itself detecting a failure in the Canister.

4.3.7.2 ESCE Status Element

The ESCE status element is defined as follow:

Table 164 ESCE Status Element

		Enclosur	e Services Co	ontroller Elect	ronics Status	Element			
Bit	7	6	5	4	3	2	1	0	
Byte	-								
0				COMMO	I STATUS				
1	IDENT	FAIL	Reserved						
2		Reserved R							
3	HOT SWAP								

IDENT

An IDENT bit is set to indicate that the RQST IDENT control bit is set and the device is providing a visual indication of its location. An IDENT bit is cleared when the RQST IDENT control bit is cleared.

FAIL

A FAIL bit set to one indicates that the enclosure services process is identifying the element with a visual failure indication based on the RQST FAIL bit in the control element. A FAIL bit set to zero indicated the enclosure services process is not identifying the element with a visual failure indication based on the RQST FAIL bit in the control element.

HOT SWAP

A HOT SWAP bit set to one indicates that ESCE may be replaced without removing power from the

subenclosure that contains it. A HOT SWAP bit set to zero indicates that the ESCE is not a replaceable element or power is required to be removed from the subenclosure before it is replaced.

ELEMENT STATUS CODE In COMMON STATUS, this field is used to indicate ESCE element presence and failure status, defined as follow:

Status Code	Name	Condition
1h	Ok	Canister is installed and no error conditions are known
2h	Critical	Critical condition is detected
3h	Non-critical	Non-critical condition is detected
5h	Not installed	Canister is not installed
6h	Unknown	Peer communication lost
7h	Not Available	MIPSRDY lost

Table 165 ELEMENT STATUS CODE for ESCE

Other fields are not used.

4.3.8 Enclosure Element (0Eh)

The Enclosure element manages the enclosure itself.

4.3.8.1 Enclosure Control Element

The Enclosure control element is defined as follow:

Table 166	Enclosure	Control	Element
-----------	-----------	---------	---------

Enclosure Control Element										
Bit	7	7 6 5 4 3 2 1 0								
Byte										
0			•	COMMON	CONTROL			•		
1	RQST IDENT		Reserved							
2		R CYCLE UEST	-							
3			POWER OFF	F DURATION			RQST FAILURE	RQST WARNING		

RQST IDENT

This bit set to one specifies that the enclosure services process turn on Enclosure Identify LED. This bit set to zero specifies that the enclosure services process turn off Enclosure Identify LED.

RQST FAILURE

This bit set to one specifies that the enclosure services process turn on Enclosure Fault LED. This bit set to zero specifies that the enclosure services process turn off Enclosure Fault LED unless the enclosure services process is itself detecting a failure in the enclosure.

RQST WARNING

This bit set to one specifies that the enclosure services process turn on Enclosure Warning LED. This bit set to zero specifies that the enclosure services process turn off Enclosure Warning LED unless the enclosure services process is itself detecting a warning in the enclosure.

Other fields are not used.

4.3.8.2 Enclosure Status Element

The Enclosure status element is defined as follow:

	Enclosure Status Element									
Bit Byte	7	6	5	4	3	2	1	0		
0		COMMON STATUS								
1	IDENT		Reserved							
2		TIME UNTIL POWER CYCLE						WARNING LED		
3		REQI	JESTED POWE	er off durat	ION		FAILURE RQSTED	WARNING RQSTED		

Table 167 Enclosure Status Element

IDENT

This bit is set to indicate that the RQST IDENT control bit is set and the device is providing a visual indication of its location. The IDENT bit is cleared when the RQST IDENT control bit is cleared.

FAILURE LED

This bit set to one indicates that a failed condition was detected by the enclosure services process and that the Enclosure Fault LED is turned on.

WARNING LED

This bit set to one indicates that a warning condition was detected by the enclosure services process and that the Enclosure Warning LED is turned on.

FAILURE RQSTED

This bit set to one indicates that a failed condition has been requested by an application client with the Enclosure Control diagnostic page and that the Enclosure Fault LED is turned on. This bit set to zero indicates that a failed condition has not been requested by an application client.

WARNING RQSTED

This bit set to one indicates that a warning condition has been requested by an application client with the Enclosure Control diagnostic page and that the Enclosure Warning LED is turned on. This bit set to zero indicates that a warning condition has not been requested by an application client.

ELEMENT STATUS CODE In COMMON STATUS, this field is used to indicate Enclosure element status, defined as follow:

Status Code	Name	Condition
1h	Ok	No error conditions are known in the enclosure
2h	Critical	Critical condition is detected
3h	Non-critical	Non-critical condition is detected
6h	Unknown	Enclosure is not accessible (Enter LOCK DOWN mode)

Table 168 ELEMENT STATUS CODE for Enclosure

Other fields are not used.

4.3.9 Voltage Sensor Element (12h)

The Voltage Sensor element manages a voltage sensor.

4.3.9.1 Voltage Sensor Control Element

The Voltage Sensor control element is defined as follow:

	Voltage Sensor Control Element									
Bit Byte	7	6	5	4	3	2	1	0		
0		COMMON CONTROL								
1	RQST IDENT	RQST FAIL	Reserved							
2				Rese	rved					
3										

4.3.9.2 Voltage Sensor Status Element

The Voltage Sensor status element is defined as follow:

			Voltage	Sensor Stat	tus Element			
Bit Byte	7	6	5	4	3	2	1	0
0		COMMON STATUS						
1	IDENT	FAIL	Rese	erved	WARN OVER	WARN UNDER	CRIT OVER	CRIT UNDER
2	(MSB)				<u>.</u>			
-				VOL	TAGE			
3								(LSB)

WARN OVER

This bit set to one indicates that the voltage indicated by the VOLTAGE field is above the high warning threshold. This bit set to zero indicates that the voltage indicated by the VOLTAGE field is below the high warning threshold.

WARN UNDER

This bit set to one indicates that the voltage indicated by the VOLTAGE field is below the low warning threshold. This bit set to zero indicates that the voltage indicated by the VOLTAGE field is above the low warning threshold.

CRIT OVER

This bit set to one indicates that the voltage indicated by the VOLTAGE field is above the high critical threshold. This bit set to zero indicates that the voltage indicated by the VOLTAGE field is below the high critical threshold.

CRIT UNDER

This bit set to one indicates that the voltage indicated by the VOLTAGE field is below the low critical threshold. This bit set to zero indicates that the voltage indicated by the VOLTAGE field is above the low critical threshold.

VOLTAGE

This field indicates the voltage detected by the voltage sensor, measured in units of 10mV.

ELEMENT STATUS CODE In COMMON STATUS, this field is used to indicate Voltage Sensor element presence and failure status, defined as follow:

Table 171 ELEMENT STATUS CODE for Voltage Sensor

Status Code	Name	Condition
1h	Ok	The sensor is installed and no error conditions are known
2h	Critical	OV or UV critical condition is detected
3h	Non-critical	OV or UV warning condition is detected
5h	Not installed	The sensor is not installed
6h	Unknown	The sensor is not accessible (I2C access error)

Other fields are not used.

4.3.10 Current Element (13h)

The Current element manages a current sensor

4.3.10.1 Current Control Element

The Current control element is defined as follow

Table 172 Current Control Element

Current Control Element									
Bit	7	6	5	4	3	2	1	0	
Byte	_								
0		COMMON CONTROL							
1	RQST IDENT								
2				Rese	rved				
3	1								

4.3.10.2 Current Status Element

The Current status element is defined as follow

Table 173 Current Status Element

			Curre	ent Status Ele	ment			
Bit	7	6	5	4	3	2	1	0
Byte								
0				COMMON	I STATUS	11		
1	IDENT	FAIL	Rese	erved	WARN OVER	Reserved	CRIT OVER	Reserved
2	(MSB)							

	CURRENT
3	(LSB)

WARN OVER

A WARN OVER (over current warning) bit set to one indicates that the current indicated by the CURRENT field is above the high warning threshold. A WARN OVER bit set to zero indicates that the current indicated by the CURRENT field is below the high warning threshold.

CRIT OVER

A CRIT OVER (over current critical) bit set to one indicates that the current indicated by the CURRENT field is above the high critical threshold. A CRIT OVER bit set to zero indicates that the current indicated by the CURRENT field is below the high critical threshold.

CURRENT

A CURRENT field indicates the current detected by the current sensor, measured in units of 10 mA. A.C. currents are measured in amperes A.C., RMS. The value is expressed as a 16-bit number using two's complement notation to indicate negative numbers. The largest positive current that is able to be expressed is 327.67 A and the largest negative current that is able to be expressed is -327.67 A.

4.3.11 SAS Expander Element (18h)

The SAS Expander element manages a SAS expander device.

4.3.11.1 SAS Expander Control Element

The SAS Expander control element is defined as follow:

Table 174 SAS Expander Control Element

			SAS Exp	oander Contro	l Element				
Bit Byte	7	6	5	4	3	2	1	0	
0		COMMON CONTROL							
1	RQST IDENT	RQST FAIL			Rese	erved			
2				Rese	rved				
3									

4.3.11.2 SAS Expander Status Element

The SAS Expander status element is defined as follow:

Table 175 SAS Expander Status Element

			SAS Exp	ander Statu	s Element					
Bit Byte	7	6	5	4	3	2	1	0		
0		COMMON STATUS								
1	IDENT	FAIL		Reserved						
2			•	Reserved						
3										

ELEMENT STATUS CODE In COMMON STATUS, this field is used to indicate SAS Expander element status, defined as follow:

Table 176 ELEMENT STATUS CODE for SAS Expander

Status Code	Name	Condition
1h	Ok	Element is installed and no error conditions are known
5h	Not installed	Element is not installed
6h	Unknown	SAS Expander is not accessible (Enter LOCK DOWN mode)

Other fields are not used.

4.3.12 SAS Connector Element (19h)

The SAS Connector element manages a SAS connector or a portion of a SAS connector.

4.3.12.1 SAS Connector Control Element

The SAS Connector control element is defined as follow:

	Table 177	SAS	Connector	Control	Element
--	-----------	-----	-----------	---------	---------

			SAS Cor	nector Cont	rol Element					
Bit Byte	7	6	5	4	3	2	1	0		
0			COMMON CONTROL							
1	RQST IDENT		Reserved							
2			Reserved							
3	Reserved	RQST FAIL			Rese	rved				

This element has no effect.

4.3.12.2 SAS Connector Status Element

The SAS Connector status element is defined as follow:

Table 178 SAS Connector Status Element

			SAS Cor	nnector Statu	is Element						
Bit Byte	7	6 5 4 3 2 1									
0				COMMO	N STATUS			•			
1	IDENT		CONNECTOR TYPE								
2			CONNECTOR PHYSICAL LINK								
3	Reserved	FAIL			Rese	erved					

CONNECTOR TYPE

This field indicates the type of connector.

CONNECTOR PHYSICAL LINK

This field indicates the physical link in the connector represented by this element.

ELEMENT STATUS CODE

In COMMON STATUS, this field is used to indicate SAS Connector element status, defined as follow:

Table 179 ELEMENT STATUS CODE for SAS Expander

Status Code	Name	Condition
1h	Ok	Element is installed and no error conditions are known
5h	Not installed	Element is not installed

6h	Unknown	SAS connector is not accessible (Enter LOCK DOWN	
		mode)	

Other fields are not used.

Command Line Interface

The Command Line Interface (CLI) is provided as an alternative interface for users to monitor and control the enclosure management processes. This section provides detailed definitions of CLI commands.

4.4 Access Interfaces

This CLI can be accessed via back plate serial console port. The setting parameters for serial port are listed as below:

Table 180 Command Line Interface Setting Parameters

Setting Item	Value
Baud Rate	115200
Date	8 bit
Parity	No
Stop	1 bit
Flow Control	No

4.5 Commands summary

The table below shows the list of commands:

Table 181 CLI commands list

Command	Description		
help	Display CLI command list		
about	Display firmware version and copyright information		
drv	Show array device slot element status		
esm	Show enclosure service control electronics element status		
fan	Show/Control working mode and speed of cooling fans		
fru	Display/Change system inventory information of FRUs and enclosure		
log	Display /Clear system event and operation log		
port	SAS Expander port status display		
power	Display power status of FRU and Voltage Sensors. Change power status of FRU		
reset	Reset local canister		
temp	Display temperature sensors reading value.		
threshold	Display/Set threshold values for various sensors		
checklist	Display Compatibility Check Table. Set Compatibility Matrix.		
mode	Display canister current state.		
config	Display/Reset user configuration.		
debug	Toggle system debug information on/off switch		
errlog	Display firmware application error log.		
led	Show/Set status of various LED indicators		
spin	Drive spin up/down control		
vpd	Display/Program various VPD		
phy	Implement enable, disable and reset on given PHY.		

4.6 Command Keywords

All CLI commands are in lower case and are case sensitive.

All numbers used at CLI are decimal by default. To use hexadecimal data type "0x" before numbers.

The general syntax for commands is as follow:

command <sub_cmd_1 | sub_cmd_2> [option] [{parameter_1} | {parameter_2}]

<> embraces mandatory parameters
[] embraces optional parameters
{} embraces variables
| separates options of a parameter

The following abbreviations may be used in CLI commands:

```
db = drive board
ps = Power Supply
sys = System
encl = Enclosure
t = Temperature sensor
v = Voltage sensor
drv = Hard disk drive
led = LED indicator
flt = Fault
id = Identify
```

4.7 Prompt

Firmware should use the element descriptor that represents the local canister as the CLI prompt string.

4.8 Error and Status Messages

Below is the list of error and status messages that should be used by the CLI when returning command execution results:

- Access device failure
- Bad parameter specified
- Bad status returned
- Invalid command
- FRU not installed
- Drive not installed
- This function is not supported by hardware
- Target device absent

4.9 Command Definitions

This section provides a complete list of all commands supported by the CLI. Note that values shown in this section are examples and are not necessarily match the real system display.

4.9.1 help

Description

This command displays a short summary of the available commands...

```
help [<command>]
```

4.9.2 about

Description

This command displays CLS SES firmware revision and copyright information.

Synta	IX		
about			

4.9.3 drv

Descriptor

This command displays the information and status of drives in each device slot.

Syntax

```
drv <get> [{slot_id}]
Sub_cmd:
    get: display the list of drive disk status and slot virtual
indicator status.
Options:
    none.
Parameter:
    slot_id: drive slot id.
```

4.9.4 esm

Descriptor

This command displays reading value and status of each elements located in each esce..

```
Parameter:
esm_slot_id: physical slot ID of ESM, 0 = ESM A, 1 = ESM B.
```

4.9.5 fan

none.

Description

This command is used to monitor and control the cooling fans.

Syntax

```
fan <get | set> [-1 | --level | -m | --mode | -p | -pwm]
                [{speed level} | {control mode} | {pwm value}]
Sub cmd:
   get: display fan working mode, speed and status pwm value.
   set: change fan working mode or speed or pwm value.
Options:
   --level: fan speed level
  -l: abbreviation of --level.
   --mode: cooling control mode. Internal - fan speed is controlled by
  enclosure management firmware. External - fan speed is
   controlled by CLI or SES page.
   -m: abbreviation of --mode.
   --pwm: fan PWM setting in percentage, 100 means full speed.
  -p: abbreviation of --pwm.
Parameter:
   speed level: 0-7, must be specified with option --level or -1.
   control mode: i(internal) or e(external), must be specified with option -
   mode or -m.
  pwm value: 0-100, must be specified with option --pwm or -p.
```

4.9.6 fru

Description

This command is used to display inventory information of various elements, including PS, Canister and Enclosure. This command also supports to change dynamic inventory information.

```
Options:

--enclosure: set enclosure information.

-e: abbreviation of --enclosure.

--can: set canister information.

-c: abbreviation of --can

--ps: set power supply information.

-p: abbreviation of --ps.

Parameter:
```

none.

4.9.7 log

Description

This command is used to display and clear local or peer log repository.

Syntax

```
Usage:
     log <get> [-s | --severity] [i | w | c] [p]
     log <clear> [p]
     log <filter> <get|set> <-s | --severity> [0 | 1 | 2]
Sub cmd:
   get: display event log entries.
   clear: clear all event log entries.
Option:
   --severity: event display filters.
   -s: abbreviation of --severity.
Parameter:
  i: info.
  w: warning.
  c: critical.
   severity must be specified with option --severity or -s.
  p: peer log repository
```

4.9.8 port

Description

This command is used to display each port status of SAS expander.

```
Option:
none.
```

Parameter: none.

4.9.9 power

Descriptor

This command is used to display power supply status, voltage sensors reading value and power failure conditions.

This command also supports to power on/off specified power supply and do power margin operations.

Syntax

```
Usage:
    power <get | set> [-m | --margin] [{ps id} | {can id}] [on | up | down
| off]
Sub cmd:
   get: display power status of PS and voltage sensor.
   set: change power state of PS or do power margin on voltage sensors
located in given canister
Option:
   --margin: implement power margin to voltage sensors located in given
canister.
   -m: abbreviation of --margin.
Parameter:
  ps id: power supply id for power supply, use format like this:
   "ps" + number, for example ps0, ps1.
   can id: canister id for canister, use format like this:
   "CAN" + number, for example CANO, CAN1.
   can id must be specified with option --margin or -m
   up: power margin up on all the voltage sensors located in given
canister.
   down: power margin down on all the voltage sensors located in given
canister.
off: power margin off on all the voltage sensors located in given canister
   on: power on ps.
   off: power off ps
  Must be specified with "power set" command and parameters "ps id"
```

4.9.10 reset

Description

This command is used to reset local canister.

Syntax

reset

4.9.11 temp

Descriptor

This command shall display the temperature sensors reading and temperature failure conditions..

Syntax

temp <get>

4.9.12 threshold

Descriptor

This command supports to display or change threshold values of an element.

```
Usage:
     threshold <get | set> [{sensor id}] [{lc}][{lw}][{uw}][{uc}]]
Sub cmd:
  get: display current threshold values.
  set: change threshold values.
Option:
  none.
Parameter:
  sensor id: identifier number of a sensor. Use command "threshold
get" to display and find out sensor id for a specific sensor. Must
be specified with "threshold set" command. If not specified with
"threshold get" command, it will display threshold values of all
sensors.
   Threshold types:
   uc: Upper Critical
  uw: Upper Warning
  lw: Lower Warning
  lc: Lower Critical
  Must be specified in the following sequence: lc <= lw <= uw <=
ис..
```

4.9.13 checklist

Description

This command is used to get Compatibility Check Table. This command also supports to set Compatibility Matrix (Enable or Disable Compatibility Check items) or reset it to default value. If an item is enabled in Compatibility Check Table, it will be checked during system initialization.

Syntax

```
Usage:
     checklist <get | set | reset> [-r | --range] [{first last} |
     {check item index}] [on | off].
Sub cmd:
   get: display the list of compatibility check items and current status.
  set: enable/disable the compatibility check items.
  reset: reset to factory default checklist setting.
Option:
   --range: set a group of checklist items.
   -r: abbreviation of --range.
Parameter :
  first: index of the first item in the group.
  last: index of the last item in the group.
  first and last must be specified with option -r or --range.
  check item index: index of an item in check list. Use command "checklist
  get" to display and find out check item index for a specific checking
  item.
  on: enable item, all enabled items will be checked in compatibility
  checking process.
   off: disable item, all disabled items will not be checked in
compatibility
   checking process.
```

4.9.14 mode

Description

This command is used to display local canister current state. This command also supports to force local canister to change from LOCK DOWN state to Compatibility Check mode to recover from LOCK DOWN mode.

```
Parameter:
  state id: defined power state, must be specified with "mode set"
  State ID
                     Description
  _____
                     No Power
  Α
  В
                     Compatibility Check
  С
                     Lock Down
  D
                     Single Mode
  Ε
                     Shared Mode
"mode set" command only supports the following operations: This canister is
in
state C: Lock Down. User is allowed to issue "mode set B" command to force
this canister to return from Lock Down.
```

4.9.15 config

Description

This command displays user configuration and reset user configuration to factory default.

Syntax

```
Usage:
    config <get | reset>
Sub_cmd:
    get: display user configuration stored in EEPROM.
    reset: reset to factory default user configuration.
Option:
    none.
Parameter:
    none.
```

4.9.16 debug

Description

This command is used to turn on/off system debug information and change the debug message verbose level.

Syntax

```
debug [on | off] [-1 | --level {severity level}]
```

4.9.17 errlog

Description

This command is used to display error log. This command also supports to turn on/off error log or setting the severity level of firmware application error log.

Syntax

```
Usage:
     errlog <get | set> [-1 | --level] [on | off] [{severity level}]
Sub cmd:
   get: display current errlog, errlog status and errlog severity level.
   set: change status of error log switch and log severity.
Option:
   --level: optional flag, indicate that a severity level parameter is
   provided.
   -l: abbreviation of --level.
Parameter:
  on: turn on firmware logger.
   off: turn off firmware logger.
  severity level: severity level of firmware log filter, from 1 to 3.
   1 = Info
  2 = Warning
  3 = Critical
  Must be specified with option --level or -l.
```

4.9.18 led

Description

This command supports directly control to physical LEDs.

```
Usage:
    led <get | set> [{led_id}] [on | off | fast | slow]
Sub_cmd:
    get: display LED indicators current status.
    set: change LED indicators status.
Option:
    none.
Parameter:
    led_id: indicates which led to set or get. Must specified with "led set"'
    on: turn on LED.
    off: turn off LED.
    fast: turn on LED to blink fast.
    slow: turn on LED to blink fast.
    slow: turn on LED to blink slow.
    An action must be specified when use "led set" command.
```

4.9.19 spin

Description

This command supports to spin up or spin down a drive or a group of drives.

Syntax

```
Usage:
    spin [-g | --group] <up | down> <{drv_slot_id} | {first_slot_id
last_slot_id}>
Sub_cmd:
    none.
Options:
    -group: spin up/down a group of drives.
    -g: abbreviation of --group.
Parameter:
    up: spin up one or a group of drive(s)
    down: spin down one or a group of drive(s)
    down: spin down one or a group of drive.
    first_drv_slot_id: physical slot ID of drive.
    first_drv_slot_id: the first drive slot id of this group of drives.
    last drv slot_id: the last drive slot id of this group of drives.
```

4.9.20 vpd

Description

This command supports to display, program and reset VPD content of Midplane, Canister and Power Supply.

```
Usage:
    vpd <get | set> <-m | -- Midplane | -c | --can | -p | --ps>
        <{mp_vpd_id} | {esm_slot_id} | {ps_slot_id}> [{offset}] [{length}]
Sub_cmd:
    get: display vpd content.
    set: update vpd content.
Option:
    -- Midplane: select content of Midplane vpd to be shown.
    -m: abbreviation of -- Midplane.
    --can: select content of canister vpd to be shown.
    -c: abbreviation of --can.
    --ps: select content of power supply vpd to be shown.
    -p: abbreviation of --ps.
Parameter:
    mp vpd id: ID of Midplane vpd, 0 = Midplane vpd 0, 1 = Midplane vpd 1
```

```
can_slot_id: physical slot ID of canister, 0 = canister A, 1 = canister
B.
ps_slot_id: physical slot ID of power supply, 0 = ps slot A, 1 = ps slot
B.
offset: starting address of vpd data display. This is the EEPROM
internal data offset. Default is 0x0 if not specified.
length: data length of vpd data to be displayed, in bytes. Default is
0x100 if not specified.
```

4.9.21 phy

Description

This command is used to do enable, disable or reset to given PHY.

```
Usage:
    phy <enable | disable | reset> <all | {phy id}>
    phy loopback <-sys | -ext> <-t | -n> [{test time} | {error num}] <-p>
<{phy id} | all>
    phy cnt <-{error cnt type} | -all> <{phy id} | all>
Sub_cmd:
   enable: enable phy.
   disable: disable phy, continuous OOB INIT.
  reset: reset phy, do link reset sequence.
  loopback: loopback test
   cnt: get given or all types of error count
Option:
   -sys: implement system side analog loopback
   -ext: implement external loopback
  -t: duration for inserting PRBS patterns
  -n: number of error patterns
  -p: phy id
  Above options are required for Sub cmd "loopback"
  -all, -code viol, -disp, -crc, -lost dwd sync and -invalid dwd: error
counter type
  Above options are required for Sub cmd "cnt"
Parameter:
  all: all expander phys.
  phy id: specific phy id.
```