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Purpose

Purpose

This white paper provides best known methods and practices on how to efficeintly 
use high capacity SSDs that utilize greater than 4KiB Indirection Unit (IU). This 
includes, but is not limited to, some of the latest Intel® QLC 3D NAND SSDs. 

Scope

This white paper focuses on the Linux* operating system (OS) utilizing traditional I/O 
paths. Introducing the read-modify-write (RMW) cycle concept and its system level 
implications. Linux I/O stacks are illustrated and different types of I/O are explained. 
Finally, we explore BKMs and practices to maximize performance and endurance for 
coarse IU SSDs.

Target Audience

Targeted for application developers, system administrators, and system operators 
wanting to configure underlying software and hardware storage infrastructure. This 
document assumes familiarity with basic software development and storage related 
terminology. 

Glossary
• 	Indirection Unit (IU): An object of a particular size that can be accessed using

some kind of reference; e.g. name, id, pointer, etc. For example, logical block
(sector) represents IU for the storage devices. Actual user data on the storage
device may be stored in different physical locations on the media, but users
always reference that data by providing the logical block address (LBA). SSD IU
refers to the internal construct that the SSD uses to manage data placement on
the physical media.
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• Read-Modify-Write: A process of updating content in
memory or storage. It consists of reading old content,
merging it with new content, and subsequently writing the
updated data back to the media.

Background Information
Standard capacity SSDs, which utilize 4KiB IUs, work well with 
existing host software. This is because a majority of writes 
submitted by host software to the SSD are in page (4KiB for 
x86 based systems) granularity and alignment. It is possible for 
the host system to submit sub-IU-sized or misaligned writes 
to the SSD (e.g. 512B), but these writes are not optimal from a 
performance and endurance perspective. 

Recent increases in storage density allow larger capacity SSDs 
to be built. Such SSDs will utilize bigger IU sizes (e.g. 16KiB) to 
reduce SSD cost. Customers who want to efficiently use coarse 
IU-sized SSDs should modify their software so that writes 
issued are IU aligned and multiple in size of IU. It is still possible 
for the host system to issue writes that are smaller than IU (e.g. 
4KiB), but SSD performance and endurance will be impacted.

SSD Endurance Management and Read-Modify Cycle

To maximize its endurance, modern SSDs apply wear 
leveling techniques to determine best data placement 
on the media. One of the wear leveling techniques is to 
map logical blocks (LB) accessible by the host system to 
the physical locations on the media, so the same LB can 
point to different physical locations inside the SSD. The 
SSD controller manages that map and determines where 
to place user data on the media. This allows all the media 
blocks to be written approximately the same number of 
times, thus maximizing SSD endurance.

LB-to-physical location map typically associates 512B LB 
to bigger-sized units, for example 4KiB IUs. This technique 
enables SSD cost reduction associated with storing the 
indirection map, but it may negatively impact SSD write 
performance and endurance.

Figure 1 shows an example storage device implementing 
this concept. The example storage device is divided into 
smaller units called sectors. A sector is the minimal unit 
that can be read from, or written to, and is typically 512B 
in size. Several sectors (8 in the given example) are tracked 
together internally by the storage device controller which 
can only access the underlying media in the larger units 
(4KiB in size in this example). The image illustrates optimal 

and non-optimal writes to that storage device. Optimal 
write has the following characteristics:

1. It is correctly sized – its size is equal to multiple of
“Internal storage device unit,” e.g. 4KiB.

2. It is correctly aligned – its starting address is aligned
to multiple of “Internal storage device unit,” e.g. write
starts at the 8th sector.

Figure 1 also illustrates writes that are not optimal from 
the storage device perspective. The first red-colored 
write is misaligned – it starts at the 25th sector. This write 
requires the storage device to read old data from two units 
(shown in grey), merge it with new data, and write two 
units back to the media. A similar situation happens for 
the second red-colored write operation, for which I/O is 
properly aligned but its size is smaller than the unit size. 
This is why the storage device controller needs to read the 
whole unit, merge it with new data, and write the single 
unit to the media. Actual amount of data written to the 
media is bigger in size than original user-initiated write. 

Figure 1 illustrates the concept of RMW cycle and its 
negative impact on:

1. Performance: A single write operation in RMW cycle
requires storage device to perform two                  I/
Os: read the old content from the media, merge it with
new content, and write all the data pieces back to the
underlying media

2. SSD endurance: In the RMW cycle, the storage device
has to write more data than it was originally requested
to write. As shown by the first red-colored write in the
given example, the storage device was requested to
store eight sectors. This write triggered the RMW cycle,
which ultimately caused 16 sectors to be written back
to the underlying media.

As indicated earlier, for certain high capacity Intel SSDs 
SKUs, IU size will be increased. While different IU sizes 
may be offered (e.g. 16KiB, 64KiB) depending on the SSD 
SKU, this whitepaper provides BKMs and practices that are 
applicable to any IU size.

Figure 1. Example Storage Device Layout
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Linux I/O Stack

This section illustrates Linux I/O stack software layers, and 
explains different types of I/O. This section is an introduction to 
the applicable techniques for optimizing I/O for coarse IU SSDs.

File System and Block Layer SW Stack
Figure 2 illustrates a simplified model for the file system 
and block layer software stack in the Linux kernel. The I/O 
path starts at the application layer. Typically applications 
(e.g. database management systems) issue I/O to the 
kernel through system libraries or directly through the 
system call interface. Application I/O is intercepted by 
a virtual file system (VFS) which provides a common 
interface for different file system types. 

The path from VFS directly to the block layer is called raw 
I/O (black arrows in the diagram), whereas the path via 
logical file system (e.g. XFS) is called file system I/O (blue 
arrows in the diagram). When I/O hits the block layer, it 
typically goes to the low level disk driver and then to a 
physical storage device. Alternatively, it is submitted to 

Figure 2. Linux I/O Stack

logical volume devices’ infrastructure (e.g. RAID, LVM), 
which redirects the I/O to the proper physical device. 

The Linux kernel provides a number of different types of 
cache which are designed to improve the performance 
of file system I/O. The page cache, shown in gray, caches 
virtual memory pages, including file system pages. The size 
of the page cache is dynamic and increases to use available 
memory. When the kernel determines that page cache 
memory is needed for other purposes (e.g. to run user 
space programs), it will decrease page cache size. 

By default, file systems interact with page cache 
transparently from the application perspective; caching 
data to improve read performance, and buffering data 
to improve write performance. When an application 
developer wants to avoid file system caching, he or she 
can issue direct I/O which instructs VFS and the logical file 
system to omit page cache.

I/O Types
Applications issue different types of I/O to achieve 
different desired goals (e.g. to make sure that data was 
written to persistent media, etc.). Below are simplified 
explanations of different I/O classification types:
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• Filesystem I/O – Issued to the file in the logical file 
system.

• Raw I/O – Issued directly to the disk, bypassing logical file 
system.

• Direct I/O – Allows applications to issue I/O but bypass 
page cache. This can be useful for applications that 
maintain their own caches and want to avoid the effect of 
double caching, or do not want to pollute page cache (e.g. 
in case of backup operation). The direct I/O can be issued 
as raw I/O directly to the disk, or as file system I/O – to 
the file in the file system. 

An application developer wanting to issue direct I/O 
needs to specify O_DIRECT flag to open() system call 
and prepare memory buffers for transferring the data.

Original filesystem direct I/O may be modified by the 
filesystem to match the requirements of that filesystem, 
e.g. it can be mapped to the actual disk location or 
resized to match the filesystem block size.

• Non-blocking I/O – When an application issues I/O, it will 
complete immediately (i.e. when data is retrieved from 
page cache) or the application will blocked until the data 
becomes available. Non-blocking I/O, if supported by 
the filesystem, allows the application to continue after 
issuing I/O, without waiting for its completion. 

To use the non-blocking I/O interface, application 
developers must specify O_NONBLOCK or O_NDELAY flag 
to open()system call. Actual read or write operation will 
return an error indicating to the application that the I/O 
has not completed, or will report success when the I/O 
has completed. 

• Synchronous I/O – When specified during opening a file 
(O_SYNC flag supplied to open() syscall), the kernel will 
make sure that write I/O will write the data, and all the 
associated metadata, to the underlying storage device.

Techniques and Considerations Allowing to 
Optimize I/O for Coarse IU SSDs

This section explains the architectural choices made while 
implementing existing filesystem software stacks in the Linux 
kernel and coarse IU SSDs; choices limiting optimal use of both 
in all the use cases.

It also explains choices that allow application developers 
to optimize writes to coarse IU SSDs. Finally, it provides 
example techniques, BKMs, and code snippets showing how to 
implement these techniques.

File System Software Stack and High Capacity SSD 
Architectural Choices

Current VFS and logical filesystem software stacks are 
tightly integrated with page cache and treat the memory 
page as a fundamental unit while accessing underlying 
disks. In x86 based systems, page size is equal to 4,096B 
and a significant number of disk accesses are performed 
in page granularities. One of the consequences of the 
tight integration between page cache, VFS, and logical 
filesystems, such as XFS and ext4, is the maximum block 
size for those filesystem is page size. This may effectively 
cause one big application I/O to be translated by a 
filesystem into a number of small, page-sized I/Os. 

On the other hand, some high capacity Intel® SSD SKUs will 
utilize bigger than 4KiB IUs - s large as 16KiB. Thus, any 
write to the SSD that is smaller than, or not aligned to the 
IU (16KiB in the example) may introduce RMW cycle in the 
SSD. As indicated earlier, RMW may negatively impact SSD 
performance and endurance. Because of this, sub-IU writes 
are not optimal from the SSD perspective.

Recommended Techniques and Considerations for 
Optimizing I/O

To achieve optimal performance and endurance on coarse 
IU SSDs, consider the following techniques:

1.	 Properly size and align partitions to the IU, or its 
multiple, as illustrated in Figure 3. The same technique 
may apply to any software or hardware solution 
implementing logical volume capability on coarse IU 
SSDs. For example, it may include selecting proper 
stripe size for RAID. Please refer to the documentation 
of the specific product.

Figure 3. Optimal SSD Partition Alignment
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Figure 4. Code snippet showing example implementation of optimal I/O: direct I/O performed on raw block 
device that adheres to IU size and alignment recommendations (in this example IU is 16KiB in size)

2. To achieve optimal I/O performance and endurance on coarse IU SSDs, perform I/O directly on the raw block device
file (e.g. /dev/nvme0n1) bypassing the logical file system and page cache (open file with O_DIRECT flag). For optimal
performance, I/O should be sized and aligned to IU or its multiple. Please refer to Figure 4 for example code snippet
that can be incorporated to the software.
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Future work and final notes
Potential future Intel work includes:

• 	 Ecosystem enablement, including collaboration with standardization bodies, open source communities, and OSVs to 
define mechanism for discovery I/O optimization attributes, such as recommended write size and alignment. This will allow 
application developers to modify their software infrastructure to utilize those attributes in their software and thus achieve 
optimal performance and endurance from coarse IU SSDs.

• 	 Documenting the optimal performance and endurance techniques through whitepapers/how-to document, etc.


