
White Paper
Data Center
Storage

Recent increases in storage density allow larger capacity SSDs to be built, utilizing bigger IU
sizes. Here are techniques on how to efficiently use coarse IU sized SSDs.

Achieving Optimal Performance
& Endurance on Coarse
Indirection Unit SSDs

Table of Contents

Purpose. 1

Glossary. 2

Background Information. 2
Techniques and Considerations
Allowing to Optimize I/O for
Coarse IU SSDs. 4

Future Work and Final Notes. 6

Purpose

Purpose

This white paper provides best known methods and practices on how to efficeintly
use high capacity SSDs that utilize greater than 4KiB Indirection Unit (IU). This
includes, but is not limited to, some of the latest Intel® QLC 3D NAND SSDs.

Scope

This white paper focuses on the Linux* operating system (OS) utilizing traditional I/O
paths. Introducing the read-modify-write (RMW) cycle concept and its system level
implications. Linux I/O stacks are illustrated and different types of I/O are explained.
Finally, we explore BKMs and practices to maximize performance and endurance for
coarse IU SSDs.

Target Audience

Targeted for application developers, system administrators, and system operators
wanting to configure underlying software and hardware storage infrastructure. This
document assumes familiarity with basic software development and storage related
terminology.

Glossary
• 	Indirection Unit (IU): An object of a particular size that can be accessed using

some kind of reference; e.g. name, id, pointer, etc. For example, logical block
(sector) represents IU for the storage devices. Actual user data on the storage
device may be stored in different physical locations on the media, but users
always reference that data by providing the logical block address (LBA). SSD IU
refers to the internal construct that the SSD uses to manage data placement on
the physical media.

Authors

Andrzej Jakowski,
NSG Software Architect

Keith Busch,
SSG/OTC Software Architect

Michael Reed,
NSG Strategic Planner

Michael Allison,
NSG Principal Engineer

White Paper | Achieving Optimal Performance & Endurance on Coarse Indirection Unit SSDs 2

• Read-Modify-Write: A process of updating content in
memory or storage. It consists of reading old content,
merging it with new content, and subsequently writing the
updated data back to the media.

Background Information
Standard capacity SSDs, which utilize 4KiB IUs, work well with
existing host software. This is because a majority of writes
submitted by host software to the SSD are in page (4KiB for
x86 based systems) granularity and alignment. It is possible for
the host system to submit sub-IU-sized or misaligned writes
to the SSD (e.g. 512B), but these writes are not optimal from a
performance and endurance perspective.

Recent increases in storage density allow larger capacity SSDs
to be built. Such SSDs will utilize bigger IU sizes (e.g. 16KiB) to
reduce SSD cost. Customers who want to efficiently use coarse
IU-sized SSDs should modify their software so that writes
issued are IU aligned and multiple in size of IU. It is still possible
for the host system to issue writes that are smaller than IU (e.g.
4KiB), but SSD performance and endurance will be impacted.

SSD Endurance Management and Read-Modify Cycle

To maximize its endurance, modern SSDs apply wear
leveling techniques to determine best data placement
on the media. One of the wear leveling techniques is to
map logical blocks (LB) accessible by the host system to
the physical locations on the media, so the same LB can
point to different physical locations inside the SSD. The
SSD controller manages that map and determines where
to place user data on the media. This allows all the media
blocks to be written approximately the same number of
times, thus maximizing SSD endurance.

LB-to-physical location map typically associates 512B LB
to bigger-sized units, for example 4KiB IUs. This technique
enables SSD cost reduction associated with storing the
indirection map, but it may negatively impact SSD write
performance and endurance.

Figure 1 shows an example storage device implementing
this concept. The example storage device is divided into
smaller units called sectors. A sector is the minimal unit
that can be read from, or written to, and is typically 512B
in size. Several sectors (8 in the given example) are tracked
together internally by the storage device controller which
can only access the underlying media in the larger units
(4KiB in size in this example). The image illustrates optimal

and non-optimal writes to that storage device. Optimal
write has the following characteristics:

1. It is correctly sized – its size is equal to multiple of
“Internal storage device unit,” e.g. 4KiB.

2. It is correctly aligned – its starting address is aligned
to multiple of “Internal storage device unit,” e.g. write
starts at the 8th sector.

Figure 1 also illustrates writes that are not optimal from
the storage device perspective. The first red-colored
write is misaligned – it starts at the 25th sector. This write
requires the storage device to read old data from two units
(shown in grey), merge it with new data, and write two
units back to the media. A similar situation happens for
the second red-colored write operation, for which I/O is
properly aligned but its size is smaller than the unit size.
This is why the storage device controller needs to read the
whole unit, merge it with new data, and write the single
unit to the media. Actual amount of data written to the
media is bigger in size than original user-initiated write.

Figure 1 illustrates the concept of RMW cycle and its
negative impact on:

1. Performance: A single write operation in RMW cycle
requires storage device to perform two I/
Os: read the old content from the media, merge it with
new content, and write all the data pieces back to the
underlying media

2. SSD endurance: In the RMW cycle, the storage device
has to write more data than it was originally requested
to write. As shown by the first red-colored write in the
given example, the storage device was requested to
store eight sectors. This write triggered the RMW cycle,
which ultimately caused 16 sectors to be written back
to the underlying media.

As indicated earlier, for certain high capacity Intel SSDs
SKUs, IU size will be increased. While different IU sizes
may be offered (e.g. 16KiB, 64KiB) depending on the SSD
SKU, this whitepaper provides BKMs and practices that are
applicable to any IU size.

Figure 1. Example Storage Device Layout

White Paper | Achieving Optimal Performance & Endurance on Coarse Indirection Unit SSDs 3

Linux I/O Stack

This section illustrates Linux I/O stack software layers, and
explains different types of I/O. This section is an introduction to
the applicable techniques for optimizing I/O for coarse IU SSDs.

File System and Block Layer SW Stack
Figure 2 illustrates a simplified model for the file system
and block layer software stack in the Linux kernel. The I/O
path starts at the application layer. Typically applications
(e.g. database management systems) issue I/O to the
kernel through system libraries or directly through the
system call interface. Application I/O is intercepted by
a virtual file system (VFS) which provides a common
interface for different file system types.

The path from VFS directly to the block layer is called raw
I/O (black arrows in the diagram), whereas the path via
logical file system (e.g. XFS) is called file system I/O (blue
arrows in the diagram). When I/O hits the block layer, it
typically goes to the low level disk driver and then to a
physical storage device. Alternatively, it is submitted to

Figure 2. Linux I/O Stack

logical volume devices’ infrastructure (e.g. RAID, LVM),
which redirects the I/O to the proper physical device.

The Linux kernel provides a number of different types of
cache which are designed to improve the performance
of file system I/O. The page cache, shown in gray, caches
virtual memory pages, including file system pages. The size
of the page cache is dynamic and increases to use available
memory. When the kernel determines that page cache
memory is needed for other purposes (e.g. to run user
space programs), it will decrease page cache size.

By default, file systems interact with page cache
transparently from the application perspective; caching
data to improve read performance, and buffering data
to improve write performance. When an application
developer wants to avoid file system caching, he or she
can issue direct I/O which instructs VFS and the logical file
system to omit page cache.

I/O Types
Applications issue different types of I/O to achieve
different desired goals (e.g. to make sure that data was
written to persistent media, etc.). Below are simplified
explanations of different I/O classification types:

White Paper | Achieving Optimal Performance & Endurance on Coarse Indirection Unit SSDs	 4

• Filesystem I/O – Issued to the file in the logical file
system.

• Raw I/O – Issued directly to the disk, bypassing logical file
system.

• Direct I/O – Allows applications to issue I/O but bypass
page cache. This can be useful for applications that
maintain their own caches and want to avoid the effect of
double caching, or do not want to pollute page cache (e.g.
in case of backup operation). The direct I/O can be issued
as raw I/O directly to the disk, or as file system I/O – to
the file in the file system.

An application developer wanting to issue direct I/O
needs to specify O_DIRECT flag to open() system call
and prepare memory buffers for transferring the data.

Original filesystem direct I/O may be modified by the
filesystem to match the requirements of that filesystem,
e.g. it can be mapped to the actual disk location or
resized to match the filesystem block size.

• Non-blocking I/O – When an application issues I/O, it will
complete immediately (i.e. when data is retrieved from
page cache) or the application will blocked until the data
becomes available. Non-blocking I/O, if supported by
the filesystem, allows the application to continue after
issuing I/O, without waiting for its completion.

To use the non-blocking I/O interface, application
developers must specify O_NONBLOCK or O_NDELAY flag
to open()system call. Actual read or write operation will
return an error indicating to the application that the I/O
has not completed, or will report success when the I/O
has completed.

• Synchronous I/O – When specified during opening a file
(O_SYNC flag supplied to open() syscall), the kernel will
make sure that write I/O will write the data, and all the
associated metadata, to the underlying storage device.

Techniques and Considerations Allowing to
Optimize I/O for Coarse IU SSDs

This section explains the architectural choices made while
implementing existing filesystem software stacks in the Linux
kernel and coarse IU SSDs; choices limiting optimal use of both
in all the use cases.

It also explains choices that allow application developers
to optimize writes to coarse IU SSDs. Finally, it provides
example techniques, BKMs, and code snippets showing how to
implement these techniques.

File System Software Stack and High Capacity SSD
Architectural Choices

Current VFS and logical filesystem software stacks are
tightly integrated with page cache and treat the memory
page as a fundamental unit while accessing underlying
disks. In x86 based systems, page size is equal to 4,096B
and a significant number of disk accesses are performed
in page granularities. One of the consequences of the
tight integration between page cache, VFS, and logical
filesystems, such as XFS and ext4, is the maximum block
size for those filesystem is page size. This may effectively
cause one big application I/O to be translated by a
filesystem into a number of small, page-sized I/Os.

On the other hand, some high capacity Intel® SSD SKUs will
utilize bigger than 4KiB IUs - s large as 16KiB. Thus, any
write to the SSD that is smaller than, or not aligned to the
IU (16KiB in the example) may introduce RMW cycle in the
SSD. As indicated earlier, RMW may negatively impact SSD
performance and endurance. Because of this, sub-IU writes
are not optimal from the SSD perspective.

Recommended Techniques and Considerations for
Optimizing I/O

To achieve optimal performance and endurance on coarse
IU SSDs, consider the following techniques:

1.	 Properly size and align partitions to the IU, or its
multiple, as illustrated in Figure 3. The same technique
may apply to any software or hardware solution
implementing logical volume capability on coarse IU
SSDs. For example, it may include selecting proper
stripe size for RAID. Please refer to the documentation
of the specific product.

Figure 3. Optimal SSD Partition Alignment

White Paper | Achieving Optimal Performance & Endurance on Coarse Indirection Unit SSDs 5

Figure 4. Code snippet showing example implementation of optimal I/O: direct I/O performed on raw block
device that adheres to IU size and alignment recommendations (in this example IU is 16KiB in size)

2. To achieve optimal I/O performance and endurance on coarse IU SSDs, perform I/O directly on the raw block device
file (e.g. /dev/nvme0n1) bypassing the logical file system and page cache (open file with O_DIRECT flag). For optimal
performance, I/O should be sized and aligned to IU or its multiple. Please refer to Figure 4 for example code snippet
that can be incorporated to the software.

White Paper | Achieving Optimal Performance & Endurance on Coarse Indirection Unit SSDs	 6

	

	 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system
manufacturer or retailer or learn more at www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

	 Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will
affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit www.intel.com/benchmarks. 	

 Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and
configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

	 All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

	 Intel, the Intel logo, Optane, 3D XPoint, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
	 *Other names and brands may be claimed as the property of others.
	 © Intel Corporation	 1018/AJ/HC/NSG	 338395-001

Future work and final notes
Potential future Intel work includes:

• 	 Ecosystem enablement, including collaboration with standardization bodies, open source communities, and OSVs to
define mechanism for discovery I/O optimization attributes, such as recommended write size and alignment. This will allow
application developers to modify their software infrastructure to utilize those attributes in their software and thus achieve
optimal performance and endurance from coarse IU SSDs.

• 	 Documenting the optimal performance and endurance techniques through whitepapers/how-to document, etc.

